
Geometry II Chapter 5 Lecture Notes Fall 2023

§5.1Differentiable Manifolds

Definition A locally Euclidean space X of dimension n is a Hausdorff topological space such
that, for each x ∈ X, there exists a homeomorphism φx mapping some open set containing x
onto an open set in Rn.

Remark We may, if we wish, choose each φx so that φx(x) = 0 and so that the image of φx is
a ball B0(ε). Given any φx homeomorphically mapping an open set U about x onto an open set
in Rn, let ε > 0 be such that Bφx(x)(ε) ⊂ φx(U). Let

ψ : Bφx(x)(ε)→ B0(ε)

be translation by −φx(x). Then

φ̃x = ψ ◦ φx|φ−1
x (Bφx(x)(ε))

maps φ−1
x

(
Bφx(x)(ε)

)
homeomorphically onto B0(ε).

Example 1. Rn is locally Euclidean. For each x ∈ Rn, take φx to be the identity map.

Example 2. Sn is locally Euclidean. Given x ∈ Sn, let y ∈ Sn, y ̸= x. Then φx= stereographic
projection from y maps Sn \ {y} (an open set containing x) homeomorphically onto Rn.

Example 3. Projective space Pn; that is, the space of all lines through 0 in Rn+1 is locally
Euclidean. For since Pn is covered by Sn, each x ∈ Pn is contained in an open set homeomorphic
to an open set in Sn that itself contains, about each of its points, an open set homeomorphic to
an open set Rn.

Example 4. Each open subset U of a locally Euclidean space X is locally Euclidean. For if
x ∈ U, let ψx be a homeomorphism mapping an open set about x in X onto an open set in Rn.
Take φx = ψx|U∩domainψx

.

Example 5. Let Mk(R) = {M = (mij)1≤i,ȷ≤k | mij ∈ R, 1 ≤ i, j ≤ k} be the space of

k × k matrices with real entries, and let i : Mk(R) → Rk2 be the identification map (and a

homeomorphism) from Mk(R) onto Rk2 defined by

i (M) = (m11, . . . ,m1k,m21, . . . ,m2k, . . . ,mk1, . . . ,mkk, ) for each M =


m11 · · · m1k

m21 · · · m2k

· · ·
mk1 · · · mkk


Consider the subset X = {M ∈Mk(R) | detM ̸= 0} of all nonsingular k× k matrices. Since the
determinant function det :Mk(R)→ R1 defined by

det (M) =
∑
σ∈Sk

sgnσm1σ(1)m2σ(2) · · ·mkσ(k), Sk = permutation group of k nuumbers, sgnσ = sign ofσ

is continuous on Mk(R) and R1 \ {0} is open in R1, the set X = det−1
(
R1 \ {0}

)
is open in

Mk(R). Since, for each M ∈ X, the function φM = i is a coordinate function from the open set
X (containing M) in Mk(R) onto the open set i(X) in Rk2 , X is a locally Euclidean space.

Definition A Ck-differentiable manifold of dimension n is a pair (X,Φ) where X is a Hausdorff
topological space, and Φ is a collection of maps such that the following conditions hold (see
Figure 5.1) and Φ is called a Ck-differentiable structure on X.
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(1) {domainφ}φ∈Φ is an open covering of X,

(2) each φ ∈ Φ maps its domain homeomorphically onto an open set in Rn,

(3) for each φ, ψ ∈ Φ with (domainφ) ∩ (domainψ) ̸= ∅, the map ψ ◦ φ−1 is a Ck-map from
φ (domainφ ∩ domainψ) ⊂ Rn into Rn, that is, any two maps in Φ are Ck-compatible,

(4) Φ is maximal relative to (2) and (3); that is, if

– ψ is any homeomorphism mapping an open set in X onto an open set in Rn

– ψ is Ck-compatible with each map in Φ, that is, for each φ ∈ Φ with
domainφ ∩ domainψ ̸= ∅,
ψ ◦ φ−1 : φ (domainφ ∩ domainψ)→ ψ (domainφ ∩ domainψ) ⊂ Rn and
φ ◦ ψ−1 : ψ (domainφ ∩ domainψ)→ φ (domainφ ∩ domainψ) ⊂ Rn are Ck-maps,

then ψ ∈ Φ.

Remark Condition (4) implies that if Ψ is a collection of maps satisfying conditions (1), (2), (3)
and if Φ ∪Ψ is a collection of maps satisfying condition (3), then Ψ ⊂ Φ.

Remark Note that a Ck-manifold is a locally Euclidean space and a locally Euclidean space
gives rise to a C0-manifold.

If n = 2 and, in Condition (3), “Ck” is replaced by “complex analytic” (where R2 is identified
with the complex numbers C1), (X,Φ) is called a complex analytic manifold of complex dimension
1 or a Riemann surface. Φ is then called a complex structure or conformal structure on X.

The maps φ ∈ Φ are called coordinate systems, (φ, domainφ) are called coordinate charts and
Φ = {(φ, domainφ) | φ ∈ Φ} is called a Ck-atlas when it satisfies conditions (1) − (3). More
precisely, the map φ ∈ Φ is called a coordinate system (or chart) on the open set domainφ ⊂ X.
For x ∈ X, a coordinate system (or chart) about x is a coordinate system φ ∈ Φ such that
x ∈ domainφ.

Remark Each of the above Examples 1, 2, 3 and 5 of locally Euclidean spaces form the under-
lying space of a C∞-manifold. You need only check that the maps φx satisfy Condition (3) for
a manifold, and then take Φ to be a maximal set containing {φx}x∈X . Example 4 above also
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carries over to manifolds. Namely, if (X,Φ) is a Ck-manifold and U is an open set in X, then
(U,Φ|U) is a Ck-manifold, where Φ|U = {φ|U | φ ∈ Φ}.
Definition Let (X,Φ) be a Ck-manifold. A real-valued function f : X → R1 is a Cs-function
(s ≤ k), denoted f ∈ Cs(X,R1), if, for each φ ∈ Φ, f ◦ φ−1 is a Cs-function mapping the image
of φ ⊂ Rn into R1.

Let (X,Φ) be a Ck-manifold, and let x ∈ X. A real-valued function f is said to be of class Cs

(s ≤ k), in a neighborhood of x, denoted f ∈ Cs(X, x, R1), if U = (domain f) is an open set in
X containing x, and f ∈ Cs(U,R1), where U has the Ck-manifold structure as an open set in X.

Remarks Note that we are able to define Cs-functions on X because

(1) X looks locally (via the coordinate systems φ ∈ Φ like Rn, and we know what it means for
a function on Rn to be Cs;

(2) if U = domainφ and V = domainψ for φ, ψ ∈ Φ, with U ∩ V ̸= ∅, the concept of a
Cs-function in a neighborhood of x in U ∩ V is the same relative to the coordinate system
φ as to the coordinate system ψ, because ψ ◦ φ−1 is a Ck-homeomorphism and k ≥ s.

Note also that if f and g are Cs-functions in a neighborhood of x, then f + g and fg (product)
are Cs-functions in a neighborhood of x, where

domain (f + g) = domain (fg) = (domain f) ∩ (domain g).

Definition Let (X,Φ) be a Ck-manifold, and let φ ∈ Φ be a coordinate system on U = domainφ.
Let rj : Rn → R1 be the jth coordinate function on Rn; that is, rj(a1, a2, . . . , an) = aj for
(a1, . . . , an) ∈ Rn. The jth coordinate function of the coordinate system φ is the function xj :
U → R1 defined by xj = rj ◦ φ.
Remark xj : U → R1 is a Ck-function. The n-tuple of functions (x1, . . . , xn) is sometimes also
referred to as a coordinate system.

Definition Let (X1,Φ1) and (X2,Φ2) be C
k-manifolds (not necessarily of the same dimension).

A mapping Ψ : X1 → X2 is of class Cs (s ≤ k), denoted Ψ ∈ Cs(X1, X2), if, whenever f ∈
Cs(X2,R1), then f ◦Ψ ∈ Cs(X1,R1).

Exerxise 1. Show that, if Ψ : X1 → X2 is of class Cs (s ≥ 0), then Ψ is continuous.

Remarks We shall confine our attention to C∞-manifolds. We shall use the word “smooth” to
denote C∞.

We now proceed to define the concept of tangent vector on a manifold. Recall that, in Euclidean
space, a vector at a point defines a map which sends each smooth function into a real number,
namely, the directional derivative with respect to the given vector. Moreover, the vector is
determined by its values on all smooth functions. We shall use this property to define tangent
vectors on a manifold.

Definition Let (X,Φ) be a smooth manifold and let x ∈ X. A tangent vector at x is a map
v : C∞(X, x,R1) → R1 such that, if φ is a (fixed) coordinate system with x ∈ U = domainφ,
then there exists an n-tuple (a1, a2, . . . , an) of real numbers with the following property. For each
f ∈ C∞(X, x,R1),

v(f) =
n∑
i=1

ai
∂

∂ri

(
f ◦ φ−1

)∣∣∣∣
φ(x)

(Note that if W = domain f, then φ and f both defined on the open set U ∩W containing x, so
that f ◦ φ−1 is a smooth function with domain φ(U ∩W ) ⊂ Rn containing φ(x).)
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Remark If v : C∞(X, x,R1) → R1 has the property required above of a tangent vector with
respect to one coordinate system φ = (x1, . . . , xn); about x, then it also has this property with
respect to any other coordinate system about x. For, if ψ = (y1, . . . , yn) is another such coordinate
system, then, using the chain rule,

v(f) =
n∑
i=1

ai
∂

∂ri

(
f ◦ φ−1

)∣∣∣∣
φ(x)

=
n∑
i=1

ai
∂

∂ri

(
f ◦ ψ−1 ◦ ψ ◦ φ−1

)∣∣∣∣
φ(x)

=
n∑
i=1

ai

n∑
j=1

∂

∂rj

(
f ◦ ψ−1

)∣∣∣∣
ψ(x)

Jji
(
ψ ◦ φ−1

)∣∣
φ(x)

=
n∑
j=1

(
n∑
i=1

ai Jji
(
ψ ◦ φ−1

)∣∣
φ(x)

)
∂

∂rj

(
f ◦ ψ−1

)∣∣∣∣
ψ(x)

=
n∑
j=1

bj
∂

∂rj

(
f ◦ ψ−1

)∣∣∣∣
ψ(x)

where Jji
(
ψ ◦ φ−1

)
= ∂yj/∂xi is the Jacobian matrix of the function ψ ◦ φ−1, and

bj =
n∑
i=1

ai Jji
(
ψ ◦ φ−1

)∣∣
φ(x)

. Thus, to check if v is a tangent vector at x, it suffices to check the

required property in any one coordinate system at x.

Notation Given a coordinate system φ about x, let xj = rj◦φ denote the jth coordinate function
of φ. By ∂/∂xj (j = 1, . . . , n) is meant the tangent vector at x defined by

∂

∂xj
(f) =

∂

∂rj

(
f ◦ ψ−1

)∣∣∣∣
ψ(x)

for f ∈ C∞(X, x,R1)

Thus
∂

∂xj
corresponds, relative to the coordinate system φ, to the n-tuple (0, 0, . . . , 1, . . . , 0),

where the 1 is in the jth spot.

Remark 1. If x1, . . . , xn are the coordinate functions of a coordinate system φ about x, and
y1, . . . , yn are those of a coordinate system ψ about x, then the above computation shows that

∂

∂xj
=

n∑
i=1

∂yi
∂xj

∂

∂yi
for each j = 1, . . . , n

Remark 2. A tangent vector v at x ∈ X has the following properties. For any f, g ∈
C∞(X, x,R1) and for λ ∈ R1,

(1) v(f + g) = v(f) + v(g),

(2) v(λf) = λv(f),

(3) v(fg) = v(f)g(x) + f(x)v(g).

These three properties say that the map v : C∞(X, x,R1)→ R1 is a derivation.
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Moreover, these properties characterize tangent vectors; that is, we could have defined a tangent
vector to be a map v : C∞(X, x,R1) → R1 satisfying (1) − (3) above, and then proved that,

relative to any coordinate system φ about x, v =
n∑
i=1

ai (∂/∂xi) for some n-tuple (a1, . . . , an) of

real numbers, where xi is the i
th coordinate function of φ.

Remark 3. The set Xx of tangent vectors at x forms a vector space under the following rules of
addition and scalar multiplication:

(v1 + v2) (f) = v1(f) + v2(f) for all v1, v2 ∈ Xx

(λv1) (f) = λv1(f) for all v1,∈ Xx, λ ∈ R1.

To see that v1 + v2 and λv1 are tangent vectors at x, let φ be a coordinate system about x, with
coordinate functions (x1, . . . , xn). Then

v1 =
n∑
i=1

ai
∂

∂xi
and v2 =

n∑
i=1

bi
∂

∂xi

for some (a1, . . . , an) and (b1, . . . , bn). It is then easy to check that the following rules of addition
and scalar multiplication:

v1 + v2 =
n∑
i=1

(ai + bi)
∂

∂xi

λv1 =
n∑
i=1

(λai)
∂

∂xi

The map (a1, . . . , an) →
n∑
i=1

ai (∂/∂xi) gives a vector space isomorphism Rn → Xx, so Xx has

dimension n. Moreover, it is clear that {∂/∂xi | i = 1, . . . , n} is a basis for Xx. The space Xx is
called the tangent space to X at x. It is also denoted by T (X)x or by T (X, x).

For φ and ψ two coordinate systems at x, with coordinate functions (x1, . . . , xn) and (y1, . . . , yn),
respectively, the formula

∂

∂xj
=

n∑
i=1

∂yi
∂xj

∂

∂yi
for each j = 1, . . . , n

merely expresses the vector ∂/∂xj in terms of the basis {∂/∂yi | i = 1, . . . , n}. Thus the change
of basis matrix from the basis {∂/∂yi | i = 1, . . . , n}. of Xx to the basis {∂/∂xi | i = 1, . . . , n} is

precisely the Jacobian matrix

(
∂yi
∂xj

)
1≤i, j≤n

.

Remark 4. The tangent space T (Rn, a) to Rn at a point a ∈ Rn is naturally isomorphic with
Rn itself. The isomorphism Rn → T (Rn, a) is given by

(λ1, . . . , λn)→
n∑
i=1

λi
∂

∂ri

Notation We shall henceforth omit the Φ from our notation for a differentiable manifold (X,Φ).
To be sure, a locally Euclidean space X may have two or more distinct differentiable structures
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on it (or it may have none), but we shall denote a manifold (X,Φ) merely by X and shall assume
that a definite differentiable structure is given on it.

Definition Let X and Y be smooth manifolds. Let Ψ : X → Y be a smooth map. The
differential of Ψ at x ∈ X is the map dΨ : Xx → YΨ(x) defined as follows. For v ∈ Xx and
g ∈ C∞(Y,Ψ(x),R1),

(dΨ(v)) (g) = v (g ◦Ψ)

Remark It is easily checked that dΨ(v)is indeed a tangent vector at YΨ(x). For, if φ is a coordinate
system about x with coordinate functions (x1, . . . , xn), and τ is a coordinate system about Ψ(x)
with coordinate functions (y1, . . . , ym), then

[dΨ(v)] (g) = v (g ◦Ψ) =
n∑
i=1

ai
∂

∂xi
(g ◦Ψ)

=
n∑
i=1

ai
∂

∂xi

(
g ◦ τ−1 ◦ τ ◦Ψ ◦ φ−1

)∣∣∣∣
φ(x)

=
n∑
i=1

ai

m∑
j=1

∂

∂sj

(
g ◦ τ−1

)∣∣∣∣
τ◦Ψ(x)

∂

∂ri

(
sj ◦ τ ◦Ψ ◦ φ−1

)∣∣∣∣
φ(x)

where (s1, . . . , sm) are coordinates on Rm

=
n∑
i=1

m∑
j=1

ai
∂

∂yj
(g)

∂

∂xi
(yj ◦Ψ)

=

[
m∑
j=1

v(yj ◦Ψ)
∂

∂yj

]
(g)

Since this holds for all g ∈ C∞(Y,Ψ(x),R1),

dΨ(v) =
m∑
j=1

v(yj ◦Ψ)
∂

∂yj

and, in particular, dΨ(v) is a tangent vector. Furthermore, it is clear that dΨ is a linear trans-
formation Xx → YΨ(x). Since

dΨ

(
∂

∂xi

)
=

m∑
j=1

∂

∂xi
(yj ◦Ψ)

∂

∂yj

this linear transforination dΨ has matrix

(dΨ)ij =

(
∂

∂xj
(yi ◦Ψ)

)
relative to the bases {∂/∂xi | i = 1, . . . , n} and {∂/∂yj | j = 1, . . . ,m}.
Remark Let X, Y and Z be smooth manifolds. Let Ψ : X → Y and Φ : Y → Z be smooth
maps. Then d(Φ ◦Ψ) = dΦ ◦ dΨ.
Proof Suppose v ∈ Xx and h ∈ C∞(Z,Φ ◦Ψ(x),R1). Then

[d(Φ ◦Ψ)(v)] (h) = v(h ◦ (Φ ◦Ψ)) = v(h ◦ Φ) ◦Ψ)

= dΨ(v)(h ◦ Φ)
= [dΦ (dΨ(v))] (h)

= [(dΦ ◦ dΨ) (v)] (h).
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Remark Let X be a smooth manifold, and let U be open in X. Then U is itself a smooth
manifold. Moreover, the inclusion map i : U → X is a smooth map. Indeed, f ∈ C∞(X,R1)
implies f |U ∈ C∞(U,R1). Furthermore, the differential

di : T (U, u0)→ T (x, u0) for each u0 ∈ U

is an isomorphism; we shall identify these two linear spaces.

Exercise 2. If U is an open set in X and u0 ∈ U, construct a function h ∈ C∞(X,R1) such that

h(x) =

{
1 if x ∈ W an open set containing u0

0 if x /∈ U

Hint: Make use of the smooth function g : R1 → R1 defined by

g(t) =

{
e−1/t2 if t > 0

0 if t ≤ 0

If f1 ∈ C∞(U, u0,R1), use Exercise 1 to show that there exists a smaller open set W and
f ∈ C∞(X,R1) such that f |W = f1|W .
Remark Let X be a smooth manifold, and let f ∈ C∞(X,R1). Let us compute df. For v ∈
T (X, x), df(v) ∈ T (R1, f(x)). Since T (R1, f(x)) is 1-dimensional, df(v) = λ (d/dr) for some
λ ∈ R1. To determine λ, it suffices to evaluate df(v) on the coordinate function r : R1 → R1 as
follows.

λ =

[
λ
d

dr

]
(r) = [df(v)] (r) = v(r ◦ f) = v(f) =⇒ df(v) = v(f)

d

dr

Now T (R1, f(x)) is naturally isomorphic with R1 via the isomorphism

λ
d

dr
→ λ for eaach λ ∈ R1

Let us identify these two spaces through this isomorphism. Then df : T (X, x) → R1 is a linear
functional on T (X, x); that is, df is a member of the dual space T ∗(X, x) and is, as such, given
by

df(v) = v(f) for each v ∈ T (X, x)

T ∗(X, x) is called the cotangent space at x.

Definition Let X be a smooth manifold. A smooth curve in X is a smooth map α from some
(open or closed) interval I ⊂ R1 into X. If the domain of α is a closed interval [a, b], smoothness
of α means that α admits a smooth extension

α̃ : (a− ε, b+ ε)→ X.

(Note that open intervals are open sets in R1 and hence are smooth manifolds.)

A broken C∞-curve in X is a continuous map α : [a, b]→ X together with a subdivision of [a, b]
on whose closed subintervals α is a C∞ curve.

Example

α(t) =

{
(t, t sin 1/t) if t ∈ (0, 1]

(0, 0) if t = 0
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is not a smooth curve in R2 because it admits no smooth extension past 0.

Definition Let I be an interval in R1, α : I → X be a smooth curve in X. The tangent vector
to α at time t (t ∈ I), denoted by α̇(t), is defined by

α̇(t) = dα̃

((
d

dr

)
t

)
Note that α̇(t) is well defined, even at the endpoints of I.

Remark Given a tangent vector v ∈ Xx let α : I → X be a smooth curve whose tangent vector
at time t = 0 is v (Such a curve may be obtained by taking a coordinate system φ about x,
finding a curve (for example, the straight line) in Rn whose tangent vector at time 0 is dφ(v)
and pulling this curve back to X by φ−1.) Then, for f ∈ C∞(X, x,R1),

v(f) = α̇(0)(f) = dα̃

((
d

dr

)
0

)
(f) =

d

dr
(f ◦ α̃)

∣∣∣∣
0

Thus v(f) is the derivative of the “restriction” of f to the curve α. Moreover, two curves α1 and
α2 have the same tangent vector v at time 0 if and only if α1(0) = α2(0) and

d

dr
(f ◦ α̃1)

∣∣∣∣
0

=
d

dr
(f ◦ α̃2)

∣∣∣∣
0

for all f ∈ C∞(X, xR1) (see Figure 5.2)

We may use this equation to define an equivalence relation on the set of all curves α with α(0) = x.
Then we get a one-to-one correspondence between equivalence classes of curves through x and
tangent vectors at x. Thus, we could have defined a tangent vector at x to be such an equivalence
class of curves through x.

§5.2Differential Forms

Let X be a smooth manifold. Define (see Figure 5.3)

T (X) =
⋃
x∈X

T (X, x) and T ∗(X) =
⋃
x∈X

T ∗(X, x)
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T (X) is called the tangent bundle of X. T ∗(X) is called the cotangent bundle of X.

A projection map π : T (X) → X is defined as follows. If v ∈ T (X), then v ∈ T (X, x) for some
(unique) x ∈ X; set π(v) = x. Similarly, there is a projection map from T ∗(X) onto X that we
shall also denote by π.

A vector field on X is a map V : X → T (X) such that π ◦ V = iX . A vector field V is smooth if
for each f ∈ C∞(X,R1), V f ∈ C∞(X,R1). Here V f is defined by

(V f) (x) = V (x)f

A differential 1-form on X is a map ω : X → T ∗(X) such that π ◦ ω = iX . A differential 1-form
ω is smooth if for each smooth vector field V on X,

ω(V ) ∈ C∞(X,R1).

Here ω(V ) is defined by (ω(V )) (x) = ω(x) (V (x)) . We shall denote the set of all smooth vector
fields on X by C∞(X,T (X)) and the set of all smooth 1-forms by C∞(X,T ∗(X)).

Exercise 3. Define a manifold structure on T (X) so that π is a smooth map and so that a vector
field V is smooth if and only if it is a smooth map from X → TX.

Hint: For φ : U → Rn a local coordinate system on X, with coordinate functions (x1, . . . , xn),
define φ̃ : π−1(U)→ R2n by

φ̃(v) = (φ ◦ π(v), b1, . . . , bn) , where b1, . . . , bn ∈ R1 are such that v =
n∑
i=1

bi
∂

∂xi

Remark 1. Let f ∈ C∞(X,R1). Then df ∈ C∞(X,T ∗(X)). For if V ∈ C∞(X,T (X)), then
df(V ) = V f ∈ C∞(X,R1).

Remark 2. C∞(X,T (X)) and C∞(X,T ∗(X)) are both vector spaces over the reals under the
operations of pointwise addition and scalar multiplication. For example, if V1, V2 ∈ C∞(X,T (X))
and if λ ∈ R1, then V1 + V2 and λV1 are defined by

(V1 + V2)(x) = V1(x) + V2(x) and (λV1)(x) = λ(V1(x)) for each x ∈ X.
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Remark 3. Let φ be a coordinate system on X with domain U and coordinate functions
(x1, x2, . . . , xn). Then the following hold.

(1) (∂/∂xi) ∈ C∞(U, T (U)) for i ∈ {1, . . . , n}. ∂/∂xi is smooth because if

f ∈ C∞(U,R1), then f ◦ φ−1 ∈ C∞(φ(U),R1),

and, for each x ∈ U, [
∂

∂xi
(f)

]
=

[
∂

∂ri
(f ◦ φ−1)

]
(φ(x))

=

[[
∂

∂ri
(f ◦ φ−1)

]
◦ φ
]
(x)

that is,
∂

∂xi
(f) =

[
∂

∂ri
(f ◦ φ−1)

]
◦ φ ∈ C∞(U,R1).

(2) If V ∈ C∞(U, T (U)), then there exist functions ai ∈ C∞(U,R1), for i ∈ {1, . . . , n}, such
that

V =
n∑
i=1

ai
∂

∂xi

These functions ai exist because {(∂/∂xi)(x) | 1 ≤ i ≤ n} is a basis for T (X, x). They are
smooth because (∂/∂xi)(xj) = δij, so that

aj =
n∑
i=1

aiδij =
n∑
i=1

ai
∂

∂xi
(xj) = V (xj) ∈ C∞(U,R1).

(3) If V ∈ C∞(X,T (X)), then V |U ∈ C∞(U, T (U)) by the previous exercise, and V |U =
n∑
i=1

ai(∂/∂xi) as in (2) with ai ∈ C∞(U,R1).

(4) dxj ∈ C∞(U, T ∗(U)) for j ∈ {1, . . . , n} because xj ∈ C∞(U,R1). Furthermore, {dxj} is at
each point the dual basis to {∂/∂xj} because

dxj

(
∂

∂xi

)
=

∂

∂xi
(xj) = δij.

(5) If ω ∈ C∞(X,T ∗(X)), then there exist ai ∈ C∞(U,R1) such that ω =
n∑
i=1

aidxi. These

functions {ai | 1 ≤ i ≤ n} exist because {dxi} is at each point a basis for the cotangent
space. They are smooth because

ai =
n∑
j=1

ajdxj

(
∂

∂xi

)
= ω

(
∂

∂xi

)
∈ C∞(U,R1).

(6) If f ∈ C∞(U,R1), then

df =
n∑
j=1

∂

∂xj
(f)dxj
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because df =
n∑
j=1

ajdxj for some {aj | 1 ≤ j ≤ n}, and

ai =
n∑
j=1

ajdxj

(
∂

∂xj

)
= df

(
∂

∂xj

)
=

∂

∂xj
(f)

We have just seen that if f ∈ C∞(U,R1), then df is a smooth differential 1-form. We now
introduce differential k-forms.

Review of Exterior Algebra Let V be an n-dimensional vector space over the reals and let
V k denote the k-fold product V × · · · × V.
Definition A function τ : V k → R is called multilinear if for each j with 1 ≤ j ≤ k, for each
v1, . . . , vk, v

′
j ∈ V and λ ∈ R1, we have

τ(v1, . . . , vj−1, vj + v′j, vj+1, . . . , vk) = τ(v1, . . . , vj−1, vj, vj+1, . . . , vk)

+ τ(v1, . . . , vj−1, v
′
j, vj+1, . . . , vk),

τ(v1, . . . , vj−1, λvj, vj+1, . . . , vk) = λ τ(v1, . . . , vj, . . . , vk).

A multilinear function τ : V k → R is called a k-tensor on V, and the set of all k-tensors, denoted
T k(V ∗), becomes a vector space (over R) if for each τ, η ∈ T k(V ∗), v1, . . . , vk ∈ V and λ ∈ R1,
we define

(τ + η) (v1, . . . , vk) = τ(v1, . . . , vk) + η(v1, . . . , vk)

(λτ) (v1, . . . , vk) = λτ(v1, . . . , vk)

There is also an operation connecting the various spaces T k(V ∗). If τ ∈ T k(V ∗) and η ∈ T ℓ(V ∗),
we define the tensor product τ ⊗ η ∈ T k+ℓ(V ∗) by

τ ⊗ η (v1, . . . , vk, vk+1, . . . , vk+ℓ) = τ(v1, . . . , vk) · η(vk+1, . . . , vk+ℓ) for all v1, . . . , vk+ℓ ∈ V.

Note that the order of the factors τ and η is crucial here since τ ⊗η and η⊗ τ are far from equal.

Exercise 4. Use the definition to show that if S, S1, S2 ∈ T k(V ∗), T, T1, T2 ∈ T ℓ(V ∗), U ∈
T m(V ∗) and λ ∈ R, then

(S1 + S2)⊗ T = S1 ⊗ T + S2 ⊗ T
S ⊗ (T1 + T2) = S ⊗ T1 + S ⊗ T2

(λS)⊗ T = S ⊗ (λT ) = λ (S ⊗ T )
(S ⊗ T )⊗ U = S ⊗ (T ⊗ U)

Both (S ⊗ T )⊗U and S⊗ (T ⊗ U) are usually denoted simply S⊗T ⊗U ; higher-order products
T1 ⊗ · · · ⊗ Tr are defined similarly. Note that T 1(V ∗) is the dual space V ∗ and the operation ⊗
allows us to express T k(V ∗) in terms of T 1(V ∗) ∼= V ∗.

Theorem Let {vi}ni=1 be a basis for V, and let {φi ∈ V ∗ | 1 ≤ i ≤ n} be the dual basis, i.e.

φi(vj) = δij =

{
1 if i = j,

0 if i ̸= j.
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Then the set of all k-fold tensor products

B = {φi1 ⊗ · · · ⊗ φik | 1 ≤ i1, . . . , ik ≤ n}

is a basis for T k(V ∗), which therfore has dimension nk.

Proof Since

φi1 ⊗ · · · ⊗ φik (vj1 , . . . , vjk) = δiij1 · · · δikjk =

{
1 if i1 = j1, . . . , ik = jk

0 otherwise.

for any T ∈ T k(V ∗), and for any vectors w1, . . . , wk ∈ V with wi =
n∑
j=1

aijvj, we have φℓ(wi) = aiℓ

and

T (w1, . . . , wk) =
n∑

j1,...,jk=1

a1,j1 · · · ak,jkT (vj1 , . . . , vjk)

=
n∑

j1,...,jk=1

T (vj1 , . . . , vjk) · φj1 ⊗ · · · ⊗ φjk (wj1 , . . . , wjk) .

Thus

T =
n∑

i1,...,ik=1

T (vi1 , . . . , vik) · φi1 ⊗ · · · ⊗ φik ,

that is, B = {φi1 ⊗ · · · ⊗ φik | 1 ≤ i1, . . . , ik ≤ n} spans T k(V ∗).

Suppose now that there are numbers ai1...ik such that

n∑
i1,...,ik=1

ai1...ikφi1 ⊗ · · · ⊗ φik = 0 =⇒ aj1...jk =
n∑

i1,...,ik=1

ai1...ikφi1 ⊗ · · · ⊗ φik(vj1 , . . . , vjk) = 0

Thus {φi1 ⊗ · · · ⊗ φik | 1 ≤ i1, . . . , ik ≤ n} are linearly independent.

Remark Let V and W be vector spaces over R. If f : V → W is a linear transformation, then
a linear transformation f ∗ : T k(W ∗)→ T k(V ∗) is defined by

f ∗T (v1, . . . , vk) = T (f(v1), . . . , f(vk)) for each T ∈ T k(V ∗) and v1, . . . , vk ∈ V.

Exercise 5. Show that

f ∗ (S ⊗ T ) = f ∗S ⊗ f ∗T for all S, T ∈ T k(V ∗).

Example Let ⟨ , ⟩ : Rn × Rn → R be the usual inner product on Rn. Note that ⟨ , ⟩ ∈ T 2(Rn),
⟨v, w⟩ = ⟨w, v⟩ for v, w ∈ Rn and ⟨v, v⟩ > 0 if v ̸= 0.

In general, if V is an n-dimensional vector space over R, we define an inner product on V to be
a 2-tensor T such that T is symmetric, that is T (v, w) = T (w, v) for v, w ∈ V and such that T
is positive definite, that is, T (v, v) > 0 if v ̸= 0.

Theorem If T is an inner product on V, there is a basis {vi | 1 ≤ i ≤ n} for V such that
T (vi, vj) = δij. (Such a basis is called orthonormal with respect to T .) Consequently, there is an
isomorphism f : Rn → V such that

T (f(x), f(y)) = ⟨x, y⟩ for x, y ∈ Rn ⇐⇒ f ∗T = ⟨ , ⟩.
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Proof Let w1, . . . , wn be any basis for V. Use the Gram-Schmidt process to define

w′
1 = w1 ̸= 0 =⇒ T (w′

1, w
′
1) > 0,

w′
2 = w2 −

T (w′
1, w2)

T (w′
1, w

′
1)
· w′

1 ̸= 0 =⇒ T (w′
2, w

′
2) > 0, T (w′

1, w
′
2) = 0,

w′
3 = w3 −

2∑
ℓ=1

T (w′
ℓ, w3)

T (w′
ℓ, w

′
ℓ)
· w′

ℓ ̸= 0 =⇒ T (w′
3, w

′
3) > 0, T (w′

ℓ, w
′
3) = 0 for 1 ≤ ℓ ≤ 2,

· · · · · · · · ·

w′
j = wj −

j−1∑
ℓ=1

T (w′
ℓ, wj)

T (w′
ℓ, w

′
ℓ)
· w′

ℓ ̸= 0 =⇒ T (w′
j, w

′
j) > 0, T (w′

ℓ, w
′
j) = 0 for 1 ≤ ℓ ≤ j − 1,

· · · · · · · · ·

Since {wi} is a basis for V, w′
i ̸= 0 =⇒ T (w′

i, w
′
i) > 0 for each 1 ≤ i ≤ n. Also it is easy to check

that if i ̸= j, then T (w′
i, w

′
j) = 0, i.e. {w′

i} is an orthogonal basis for V. Now define

vi =
w′
i√

T (w′
i, w

′
i)

=⇒ {vi}ni=1 is an orthonormal basis with respect to T.

The isomorphism f may be defined by f(ei) = vi, where {ei} is the standard basis for Rn.

Definition A k-tensor τ ∈ T k(V ∗) is called alternating (or skew-symmetric) on V if for all
v1, . . . , vk ∈ V, and for any 1 ≤ i < j ≤ k,

τ(v1, . . . , vi, . . . , vj, . . . , vk) = − (v1, . . . , vj, . . . , vi, . . . , vk)

Let Λk(V ∗) = {τ ∈ T k(V ∗) | τ(v1, . . . , vi, . . . , vj, . . . , vk) = − (v1, . . . , vj, . . . , vi, . . . , vk)} denote
the set of all alternating k-tensors. Then it is clear that Λk(V ∗) is a subspace of T k(V ∗).

For each τ ∈ T k(V ∗) and for all v1, . . . , vk ∈ V, we define Alt (τ) by

Alt (τ)(v1, . . . , vk) =
1

k!

∑
σ∈Sk

sgnσ τ(vσ(1), . . . , vσ(k))

[
or
=

1

k!

∑
σ∈Sk

(−1)σ τ(vσ(1), . . . , vσ(k))

]
.

Exercise 6. Show that if τ ∈ Λk(V ∗), v1 . . . , vk ∈ V and vi = vj for some 1 ≤ i < j ≤ k, then

τ(v1, . . . , vi, . . . , vj, . . . , vk) = 0

Theorem

(1) If τ ∈ T k(V ∗), then Alt (τ) ∈ Λk(V ∗).

(2) If ω ∈ Λk(V ∗), then Alt (ω) = ω, i.e. Alt |Λk(V ∗) = id |Λk(V ∗) .

(3) If τ ∈ T k(V ∗), then Alt (Alt (τ)) = Alt (τ).

Proof For 1 ≤ i < j ≤ n, let σ0 = (i, j) ∈ Sk be the permutation that interchanges i and j and
leaves all other numbers fixed, i.e.

σ0(ℓ) =


ℓ if ℓ ̸= i, j

j if ℓ = i

i if ℓ = j
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(1) For each σ ∈ Sk, since
σ0 · σ0 = id =⇒ σ−1

0 = σ0,

there is a unique σ′ = σ · σ0 ∈ Sk such that σ = σ′ · σ0.

Alt (τ) (v1, . . . , vj, . . . , vi, . . . , vk)

=
1

k!

∑
σ∈Sk

sgnσ τ(vσ(1), . . . , vσ(j), . . . , vσ(i), . . . , vσ(k))

=
1

k!

∑
σ∈Sk

sgnσ τ(vσ′·σ0(1), . . . , vσ′·σ0(j), . . . , vσ′·σ0(i), . . . , vσ′·σ0(k))

=
1

k!

∑
σ∈Sk

sgnσ τ(vσ′(1), . . . , vσ′(i), . . . , vσ′(j), . . . , vσ′(k))

=
1

k!

∑
σ′∈Sk

sgn (σ′ · σ0) τ(vσ′(1), . . . , vσ′(i), . . . , vσ′(j), . . . , vσ′(k))

=
1

k!

∑
σ′∈Sk

−sgnσ′ τ(vσ′(1), . . . , vσ′(i), . . . , vσ′(j), . . . , vσ′(k))

= −Alt (τ) (v1, . . . , vk)

(2) If ω ∈ Λk(V ∗), σ0 = (i, j) ∈ Sk and v1, . . . , vk ∈ V, then

ω
(
vσ0(1), . . . , vσ0(k)

)
= sgnσ0 · ω (v1, . . . , vk) .

Since every σ ∈ Sk is a product of permutations of the form (i, j), we have

ω
(
vσ(1), . . . , vσ(k)

)
= sgnσ · ω (v1, . . . , vk) for all σ ∈ Sk.

Therefore

Alt (ω) (v1, . . . , vk) =
1

k!

∑
σ∈Sk

sgnσ ω(vσ(1), . . . , vσ(k))

=
1

k!

∑
σ∈Sk

sgnσ · sgnσ ω(v1, . . . , vk)

= ω(v1, . . . , vk)

(3) follows immediately from (1) and (2).

Definition Let ω ∈ Λk(V ∗) and η ∈ Λℓ(V ∗). Define the wedge product ω ∧ η ∈ Λk+ℓ(V ∗) by

ω ∧ η =
(k + ℓ)!

k! ℓ!
Alt (ω ⊗ η) .

Exercise 7. Let V and W be vector spaces over R, f : V → W be a linear transformation, and
let ω, ω1, ω2 ∈ Λk(W ∗), η, η1, η2 ∈∈ Λℓ(W ∗) and a ∈ R. Show that the following equations hold.

(ω1 + ω2) ∧ η = ω1 ∧ η + ω2 ∧ η,
ω ∧ (η1 + η2) = ω ∧ η1 + ω ∧ η2,

aω ∧ η = ω ∧ aη = a (ω ∧ η) ,
ω ∧ η = (−1)kℓ η ∧ ω,

f ∗ (ω ∧ η) = f ∗ (ω) ∧ f ∗ (η) .
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Theorem

(1) If S ∈ T k(V ∗), T ∈ T ℓ(V ∗) and Alt (S) = 0 then

Alt (S ⊗ T ) = Alt (T ⊗ S) = 0.

(2) If ω ∈ T k(V ∗), η ∈ T ℓ(V ∗) and θ ∈ T m(V ∗), then

Alt (Alt (ω ⊗ η)⊗ θ) = Alt (ω ⊗ η ⊗ θ) = Alt (ω ⊗ Alt (η ⊗ θ)) .

(3) If ω ∈ Λk(V ∗), η ∈ Λℓ(V ∗) and θ ∈ Λm(V ∗), then

(ω ∧ η) ∧ θ = ω ∧ (η ∧ θ) = (k + ℓ+m)!

k! ℓ!m!
Alt (ω ⊗ η ⊗ θ) .

Proof

(1) For v1, . . . , vk+ℓ ∈ V, since

(k + ℓ) ! Alt(S ⊗ T )(v1, . . . , vk+ℓ) =
∑

σ∈Sk+ℓ

sgnσ S(vσ(1), . . . , vσ(k)) · T (vσ(k+1), . . . , vσ(k+ℓ))

Let G = {σ ∈ Sk+ℓ | σ(j) = j if k + 1 ≤ j ≤ k + ℓ}, i.e. G consists of all σ which leaves
k+1, . . . , k+ ℓ fixed. Then G ⊂ Sk+ℓ is a subgroup of Sk+ℓ, G ∼= Sk (i.e. there is an isomorphism
mapping each σ ∈ G to σ′ ∈ Sk) and∑

σ∈G

sgnσ S(vσ(1), . . . , vσ(k)) · T (vσ(k+1), . . . , vσ(k+ℓ))

=
∑
σ∈G

sgnσ S(vσ(1), . . . , vσ(k)) · T (vk+1, . . . , vk+ℓ)

=

[∑
σ′∈Sk

sgnσ′ S(vσ′(1), . . . , vσ′(k))

]
· T (vk+1, . . . , vk+ℓ)

= k! Alt (S)(v1, . . . , vk) · T (vk+1, . . . , vk+ℓ) = 0

Suppose σ0 /∈ G. Let G · σ0 = {σ′ · σ0 | σ′ ∈ G}, i.e. a right coset of G in Sk+ℓ, and let

vσ0(1) = w1, . . . , vσ0(k+ℓ) = wk+ℓ

Then ∑
σ=σ′·σ0∈G·σ0

sgnσ S(vσ(1), . . . , vσ(k)) · T (vσ(k+1), . . . , vσ(k+ℓ))

= sgn σ0
∑
σ′∈G

sgnσ′ S(wσ′(1), . . . , wσ′(k)) · T (wσ′(k+1), . . . , wσ′(k+ℓ))

=

[
sgnσ0

∑
σ′∈G

sgnσ′ S(wσ′(1), . . . , wσ′(k))

]
· T (wk+1, . . . , wk+ℓ)

= (−1) k! Alt (S)(v1, . . . , vk) · T (vk+1, . . . , vk+ℓ) = 0

Notice that G ∩ G · σ0 = ∅. In fact, if σ ∈ G ∩ G · σ0, then there exists a σ′ ∈ G such that
σ = σ′ ·σ0 =⇒ σ0 = σ · (σ′)

−1 ∈ G, a contradiction. We can continue in this way, breaking Sk+ℓ
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up into disjoint subsets (i.e. right cosets) such that the sum over each right coset of G in Sk+ℓ is
0, so that the sum over Sk+ℓ is 0. The relation Alt (T ⊗ S) = 0 is proved similarly.

(2) and (3) Since

Alt (Alt (η ⊗ θ)− η ⊗ θ) = Alt (η ⊗ θ)− Alt (η ⊗ θ) = 0
(1)
=⇒ 0 = Alt (ω ⊗ [Alt (η ⊗ θ)− η ⊗ θ]) = Alt (ω ⊗ Alt (η ⊗ θ))− Alt (ω ⊗ η ⊗ θ)
=⇒ Alt (ω ⊗ Alt (η ⊗ θ)) = Alt (ω ⊗ η ⊗ θ)

=⇒ ω ∧ (η ∧ θ) = (k + ℓ+m)!

k! (ℓ+m)!

(ℓ+m)!

ℓ!m!
Alt (ω ⊗ Alt (η ⊗ θ)) = (k + ℓ+m)!

k! ℓ!m!
Alt (ω ⊗ η ⊗ θ)

and similarly since

Alt (Alt (ω ⊗ η)− ω ⊗ η) = Alt (ω ⊗ η)− Alt (ω ⊗ η) = 0
(1)
=⇒ 0 = Alt ([Alt (ω ⊗ η)− ω ⊗ η]⊗ θ) = Alt (Alt (ω ⊗ η)⊗ θ)− Alt (ω ⊗ η ⊗ θ)
=⇒ Alt (Alt (ω ⊗ η)⊗ θ) = Alt (ω ⊗ η ⊗ θ)

=⇒ (ω ∧ η) ∧ θ = (k + ℓ+m)!

(k + ℓ)!m!

(k + ℓ)!

k! ℓ!
Alt (Alt (ω ⊗ η)⊗ θ) = (k + ℓ+m)!

k! ℓ!m!
Alt (ω ⊗ η ⊗ θ)

Exercise

8. Let φ ∈ V ∗ ∼= Λ1(V ∗). Show that φ ∧ φ = 0.

9. Let τ ∈ Λk(V ∗) and µ ∈ Λℓ(V ∗). Show that µ ∧ τ = (−1)kℓτ ∧ µ.

Remark Naturally ω∧(η ∧ θ) and (ω ∧ η)∧θ are both denoted simply ω∧η∧θ, and higher-order
products ω1 ∧ · · · ∧ ωr are defined similarly. If v1, . . . , vn is a basis for V and φ1, . . . , φn is the
dual basis, a basis for Λk(V ∗) can be constructed quite easily.

Theorem For k ≤ n, the set

{φi1 ∧ · · · ∧ φik | 1 ≤ i1 < i2 < · · · < in ≤ n}

is a basis for Λk(V ∗), which therefore has dimension(
n

k

)
=

n!

k! (n− k)!

Proof If ω ∈ Λk(V ∗) ⊂ T k(V ∗), then we can write

ω =
∑

1≤i1,...,ik≤n

ai1,...,ikφi1 ⊗ · · · ⊗ φik

=⇒ ω = Alt (ω) =
∑

1≤i1,...,ik≤n

ai1,...,ikAlt (φi1 ⊗ · · · ⊗ φik)

=⇒ ω =
1

k!

∑
1≤i1,...,ik≤n

ai1,...,ikφi1 ∧ · · · ∧ φik

=⇒ ω =
∑

1≤i1<···<ik≤n

bi1,...,ikφi1 ∧ · · · ∧ φik , where bi1...ik =
1

k!

∑
σ∈Sk

(−1)σaiσ(1)...iσ(k)
,

and we have used the fact that φi ∧ φi = 0 for all 1 ≤ i ≤ n.
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If
∑

1≤i1<···<ik≤n

ai1...ikφi1 ∧ · · · ∧ φik = 0, then for any 1 ≤ j1 < · · · < jk ≤ n,

∑
1≤i1<···<ik≤n

ai1...ik (φi1 ∧ · · · ∧ φik) (vj1 , . . . , vjk) = 0

=⇒ k!
∑

1≤i1<···<ik≤n

ai1...ikAlt (φi1 ⊗ · · · ⊗ φik) (vj1 , . . . , vjk) = 0

=⇒ 0 =
∑

1≤i1<···<ik≤n

ai1...ik
∑
σ∈Sk

(−1)σφi1
(
vjσ(1)

)
· · ·φik

(
vjσ(k)

)
=⇒ 0 =

∑
1≤i1<···<ik≤n

ai1...ik
∑
σ∈Sk

(−1)σδi1jσ(1)
· · · δikjσ(k)

= aj1...jk

=⇒ aj1...jk = 0 for all 1 ≤ j1 < · · · < jk ≤ n

Thus, {φi1 ⊗ · · ·⊗φik | 1 ≤ i1, . . . , ik ≤ n} are linearly independent and form a basis for Λk(V ∗).

Remark If V is an n-dimensional vector space over R, then dimΛn(V ∗) = 1. Thus all alternating
n-tensors on V are multiples of any non-zero one. Since the determinant is an example of such
a member of Λn(Rn), it is not surprising to find it in the following theorem.

Theorem Let {vi}ni=1 be a basis for V, and let ω ∈ Λn(V ∗). If wi =
n∑
j=1

aijvj are n vectors in V,

then
ω(w1, . . . , wn) = det(aij) · ω(v1, . . . , vn)

Proof Define η ∈ T n(Rn) by

η ((a11, . . . , a1n), . . . , (an1, . . . , ann)) = ω

(
n∑
j=1

a1jvj, . . . ,
n∑
j=1

anjvj

)

Clearly η ∈ Λn(Rn), so there is a λ ∈ R such that

η = λ · det =⇒ λ = η(e1, . . . , en) = ω(v1, . . . , vn), where {ei}ni=1 is the standard basis for Rn.

Remark

(1) If we set G (V ∗) =
n∑
k=0

⊕Λk(V ∗), where Λ0(V ∗) = R1, then G (V ∗) is generated by 1 and

Λ1(V ∗) ∼= V ∗ with dimG (V ∗) = 2n. Also note that the wedge product ∧ can be extended
to G (V ∗) by linearity, that is, by requiring that ∧ be distributive with respect to vector
addition. This multiplication ∧ is associative and G (V ∗) is an algebra, with unit 1.

(2) If L : V ∗ → V ∗ is a linear transformation, then L induces a unique algebra homomorphism
L̃ : G (V ∗) → G (V ∗) which extends the map L. L̃ preserves degrees; that is, L̃ : Λk(V ∗) →
Λk(V ∗). In particular, L̃ : Λn(V ∗) → Λn(V ∗). Hence, since dim Λn(V ∗) = 1, there exists a

scalar λ such that L̃
∣∣∣
Λn(V ∗)

= λiΛn(V ∗). This scalar λ is precisely the determinant of L.
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(3) The algebra G (V ∗) is called the Grassmann algebra, or exterior algebra, of V ∗. Elements of
G (V ∗) are called forms on V. Forms in Λk(V ∗) are said to be of degree k.

Now let X be a smooth manifold,

Λk(X) =
⋃
x∈X

Λk(T ∗(X, x)), and G (X) =
⋃
x∈X

G (T ∗(X, x)).

As usual, we shall denote the projection maps from these spaces on to X by π. These spaces
can each be given the structure of a smooth manifold such that π is a smooth map.

Definition A k-form on X is a mapping µ : X → Λk(X) such that π ◦ µ = iX . A k-form µ on
X is smooth if whenever V1, . . . , Vk are smooth vector fields on X, then

µ(V1, . . . , Vk) ∈ C∞(X,R1), where µ(V1, . . . , Vk)(x) = µ(x)(V1(x), . . . , Vk(x)).

A differential form on X is a mapping ω : X → G (X) such that π ◦ ω = iX ; it is smooth if
its component in Λk(X) is smooth for each k. The set of smooth k-forms on X is denoted by
C∞(X,Λk(X)). The set of all smooth differential forms is denoted by C∞(X,G (X)). Note that
C∞(X,Λk(X)) is a vector space under pointwise addition and scalar multiplication, and that
C∞(X,G (X)) is an algebra under the additional operation of pointwise exterior multiplication.

Remark 1. A 0-form on X is just a real-valued function on X; it is a smooth 0-form if and only
if it is a smooth function.

Remark 2. Let φ be a local coordinate system on X, with domain U and coordinate functions
(x1, . . . , xn). Then {dx1, . . . , dxn} is a basis for T ∗(X, x) for each x ∈ U. Hence

{dxi1 ∧ · · · ∧ dxik | i1 < · · · < ik} is a basis for Λk(T ∗(X, x)) for each x ∈ U.

Thus, the restriction to U of each k-form µ on X can be expressed as

µ =
∑

i1<···<ik

ai1···ik dxi1 ∧ · · · ∧ dxik ,

where each ai1···ik is a real-valued function on U. Furthermore, µ is smooth if and only if, for each
(φ,U), ai1···ik ∈ C∞(U,R1). This is because

ai1···ik = µ

(
∂

∂xi1
, · · · , ∂

∂xik

)
.

Theorem 1. Let X be a smooth manifold. There exists a unique linear map d : C∞(X,G (X))→
C∞(X,G (X)), called the exterior differential, such that the following properties hold.

(i) d : C∞(X,Λk(X))→ C∞(X,Λk+1(X));

(ii) d(f) = df (ordinary differential) for f ∈ C∞(X,Λ0(X));

(iii) if µ ∈ C∞(X,Λk(X)) and τ ∈ C∞(X,G (X)), then d(µ ∧ τ) = (dµ) ∧ τ + (−1)k µ ∧ dτ ; and
(iv) d2 = 0.

Remark For the proof we need the following lemma, which asserts that for any exterior dif-
ferentiation operator d, (dω) (x) depends only on the behavior of ω in a small neighborhood of
x.

Lemma Let d : C∞(X,G (X)) → C∞(X,G (X)) be linear and satisfy the conditions of the
theorem. Suppose ω ∈ C∞(X,G (X)) is such that ω|W = 0 for some open set W ⊂ X. Then
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(dω) |W = 0. Hence, if ω, τ ∈ C∞(X,G (X)) are such that ω|W = τ |W for some open set W, then
(dω) |W = (dτ) |W .
Proof Suppose ω|W = 0. Let x0 ∈ W. Let f ∈ C∞(X,R1) be such that

f(x) =

{
1 if x = x0

0 if x /∈ W
=⇒ (fω) (x) = 0 for all x ∈ X

Since d is linear satisfying (ii), (iii) of the theorem,

0 = d (fω) = (df)∧ω+f dω =⇒ d (ω) (x0) = 0 =⇒ (dω) |W = 0 since x0 is an arbitrary point in W.

If ω|W = τ |W , then (ω − τ) |W = 0, so that

[d (ω − τ)] |W = [dω − dτ ] |W =⇒ dω|W = dτ |W .

Proof of Theorem 1.

Uniqueness. Suppose d : C∞(X,G (X)) → C∞(X,G (X)) satisfies the conditions of the theo-
rem. Let x ∈ X, and let φ be a local coordinate system about x with domain U and coordinate
functions x1, . . . , xn). Let ω ∈ C∞(X,Λk(X)). Then the restriction of ω to U can be expressed
as

ω|U =
∑

i1<···<ik

ai1···ik dxi1 ∧ · · · ∧ dxik , for some ai1···ik ∈ C∞(U,R1).

Now the right-hand side of this equation is not a differential form on X, so we cannot apply
d to it. However, let U1 be an open ball containing x with Ū1 compact and Ū1 ⊂ U, and let
g ∈ C∞(X,R1) be such that

g(x) =

{
1 for x ∈ U1,

0 for x /∈ U.

Then ω̃ ∈ C∞(X,Λk(X)), where

ω̃ =
∑

i1<···<ik

(gai1···ik) d (gxi1) ∧ · · · ∧ d (gxik) .

Here, by gh, for h ∈ C∞(U,R1), is meant the smooth function on X defined by

(gh) (x) =

{
g(x)h(x) if x ∈ U,
0 if x /∈ U.

Furthermore, ω̃|U1
= ω|U1

. By the lemma, (dω)|U1
= (dω̃)|U1

. Now

dω̃ =
∑

i1<···<ik

d [(gai1···ik) d (gxi1) ∧ · · · ∧ d((gxik)] (by linearity)

=
∑

i1<···<ik

d (gai1···ik) ∧ d (gxi1) ∧ · · · ∧ d (gxik)

+
∑

i1<···<ik

(gai1···ik) d [d (gxi1) ∧ · · · ∧ d (gxik)] (by Property (iii)

=
∑

i1<···<ik

d (gai1···ik) ∧ d (gxi1) ∧ · · · ∧ d (gxik) ,
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since each term of the second sum is zero by Properties (iii) and (iv). In particular, since g is
identically 1 on U1, and since (dω)|U1

= (dω̃)|U1
,

(dω)|U1
=

∑
i1<···<ik

n∑
j=1

∂

∂xj
(ai1···ik) dxj ∧ dxi1 ∧ · · · ∧ dxik .

Thus if d exists, its value at x on k-forms must be given by this formula. Since x was arbitrary
in X, and since every differential form is a sum of k-forms, k ∈ {0, 1, . . . , n}, uniqueness is
established.

Existence. We first define d locally. Let φ be a local coordinate system on X with domain
U and coordinate functions (x1, . . . , xn). (Note that U is itself a smooth manifold.) Define
dU : C∞(U,G (U))→ C∞(U,G (U)) as follows. For

ω =
∑

i1<···<ik

ai1···ik dxi1 ∧ · · · ∧ dxik ∈ C∞(U,Λk(U)),

define

dUω =
∑

i1<···<ik

n∑
j=1

∂

∂xj
(ai1···ik) dxj ∧ dxi1 ∧ · · · ∧ dxik .

Extend dU to C∞(U,G (U)) by linearity. Then Properties (i) and (ii) are clearly satisfied. To
verify (iii) and (iv), note first that each form in C∞(U,G (U)) is a sum of forms of the type
ai1···ik dxi1∧· · ·∧dxik . By the linearity of dU , together with distributivity of exterior multiplication
with respect to addition, it suffices to check (iii) and (iv) on forms of this type.

Property (iii). Suppose

µ = ai1···ik dxi1 ∧ · · · ∧ dxik and τ = bj1···jℓ dxj1 ∧ · · · ∧ dxjℓ .

Then

dU (µ ∧ τ) = dU [ai1···ik bj1···jℓdxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxjℓ ]

=
n∑
r=1

[
∂

∂xr
(ai1···ik) bj1···jℓ + ai1···ik

∂

∂xr
(bj1···jℓ)

]
dxr ∧ dxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxjℓ

=

(
n∑
r=1

∂

∂xr
(ai1···ik) dxr ∧ dxi1 ∧ · · · ∧ dxik

)
∧ (bj1···jℓ dxj1 ∧ · · · ∧ dxjℓ)

+ (−1)k (ai1···ik dxi1 ∧ · · · ∧ dxik) ∧

(
n∑
r=1

∂

∂xr
(bj1···jℓ) dxr ∧ dxj1 ∧ · · · ∧ dxjℓ

)
= (dUµ) ∧ τ + (−1)k µ ∧ dUτ.

Property (iv). For µ = ai1···ik dxi1 ∧ · · · ∧ dxik ,

d 2
Uµ = dU

[
n∑
r=1

∂

∂xr
(ai1···ik) dxr ∧ dxi1 ∧ · · · ∧ dxik

]

=
n∑

r, s=1

∂

∂xs

[
∂

∂xr
(ai1···ik)

]
dxs ∧ dxr ∧ dxi1 ∧ · · · ∧ dxik
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But certainly the terms in this expression with r = s are zero, since dxr ∧ dxr = 0. More over,
for r ̸= s, the equality of mixed partial derivatives on Rn implies that

∂

∂xs

∂

∂xr
(ai1···ik) =

∂

∂xr

∂

∂xs
(ai1···ik) ,

so that
∂

∂xs

∂

∂xr
(ai1···ik) dxs ∧ dxr = −

∂

∂xr

∂

∂xs
(ai1···ik) dxr ∧ dxs;

thus the remaining terms match up in pars which cancel each other.

Thus the operator dU has Properties (i)−(iv). By uniqueness, every linear operator on C∞(U,G (U))
having these properties must be given by the above formula. In particular, if U1 is any open
subset of U, the φ|U1 is a coordinate system, and dU1 : C

∞(U1,G (U1))→ C∞(U1,G (U1)) is given
in the coordinate system φ|U1 , by the same formula. Thus if ω ∈ C∞(X,G (X)), then

dU1 (ω|U1) = (dU (ω|U)) |U1 .

This relation enables us to define d globally by (dω) |U = dU (ω|U) for all ω ∈ C∞(X,G (X)) and
any coordinate neighborhoods, then

(dU (ω|U))|U∩V = dU∩V (ω|U∩V ) = (dV (w|V ))|U∩V .

Clearly, d has the required properties, since dU has them for each U.

Digression on Vector Analysis

Definition A volume element of T is a choice of basis in Λn (T ∗) ; since Λn (T ∗) is 1-dimensional,
a volume element is a choice of a nonzero element in Λn (T ∗) .

Example If T is the tangent space to a manifold and {dx1, . . . , dxn} is a basis for T ∗, then
dx1∧· · ·∧dxn is a volume element of T. (Note that a volume element ω determines an isomorphism
Λn (T ∗) ≡ R1, where rω corresponds to r. Conversely, such an isomorphism defines a volume
element ω corresponding to 1.)

Remark Given a volume element ω of T, since Λ1 (T ∗) = T ∗, dimΛn−1 (T ∗) = dimΛ1 (T ∗) and
T is isomorphic to its double dual T ∗∗, there exists a natural isomorphism m : Λn−1 (T ∗) → T
defined as follows. For φ ∈ Λn−1 (T ∗) , ψ ∈ T ∗, m(φ) is then defined by

[m(φ)] (ψ) = λ, where λ is the real number such that φ ∧ ψ = λω = λφ1 ∧ · · · ∧ φn.

To show that m is an isomorphism, let {φ1, . . . , φn} be a basis for T ∗ such that ω = φ1∧· · ·∧φn.
Then the set {φ1 ∧ · · · ∧φj−1 ∧φj+1 ∧ · · · ∧φn} is a basis for Λn−1 (T ∗) . The value of m on these
basis vectors is then given by

m (φ1 ∧ · · · ∧ φj−1 ∧ φj+1 ∧ · · · ∧ φn) = (−1)n+j ej,

where {e1, . . . , en} is the basis for T dual to {φ1, . . . , φn}.
Remark Given an inner product ⟨ , ⟩ on a finite dimensional vector space T, there exists a
natural isomorphism g : T → T ∗ defined by

[g(v)] (w) = ⟨v, w⟩ for v, w ∈ T.

If {e1, . . . , en} is a basis for T, let gij = ⟨ei, ej⟩, (1 ≤ i, j ≤ n). Then in terms of the dual basis
{φ1, . . . , φn} for T ∗,

g(ei) =
n∑
j=1

gijφj for 1 ≤ i ≤ n.
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In particular, if {e1, . . . , en} is orthonormal, then gij = δij, and

g(ei) = φi.

Applications Take T = Rn. Then T has an inner product and a natural volume element
ω = φ1 ∧ · · · ∧ φn, where {φ} is the dual basis to the natural basis {ei} for Rn. Thus the
isomorphism m and g are defined. Also, we have natural identifications T (Rn, x) ←→ Rn for
each x ∈ Rn.

(1) Let f ∈ C∞(Rn,R1). Then the gradient of f is the vector field on Rn given by

grad f = g−1 ◦ (df) .

Relative to the usual coordinates (x1, . . . , xn) = (r1, . . . , rn) on Rn,

grad f = g−1 ◦ (df) = g−1 ◦

(
n∑
j=1

∂f

∂xj
dxj

)
=

n∑
j=1

∂f

∂xj

∂

∂xj
←→

(
∂f

∂x1
, · · · , ∂f

∂xn

)
.

(2) Let V be a vector field on Take R3. Then g ◦ V is a 1-form and d (g ◦ V ) is a 2-form. Now
for dimension T = 3, Λ2(T ∗) = Λn−1(T ∗), so the isomorphism m maps Λ2(T ∗) → T. Thus
m (d (g ◦ V )) is a vector field on R3. It is called the curl of V.

curlV = (m ◦ d ◦ g) (V ).

Exercise 10. Compute the coordinate expression for curlV.

(3) Let v1 = (a1, b1, c1) and v2 = (a2, b2, c2) be vectors in R3. Then g(v1) and g(v2) are 1-forms.
Their exterior product is a 2-form; its image under m is a vector, called the cross product
of v1 and v2.

v1 × v2 = m (g(v1) ∧ g(v2)) .

(4) Let V be a vector field on Rn. Then m−1(V ) is an (n − 1)-form on Rn. Its differential is
an n-form; that is, a multiple of the volume element ω. This multiple is(up to sign) the
divergence of V :

(−1)n−1 d ◦m−1(V ) = (divV )ω.

Remark Using these formulas, certain important formulas of vector analysis become trivial
consequences of d2 = 0.

� curl grad f = 0 since

curl grad f = m ◦ d ◦ g
(
g−1 ◦ (df)

)
= m

(
d2f
)
= 0.

� div curlV = 0 since

d ◦m−1(curlV ) = d ◦m−1(m ◦ d ◦ g (V )) = d2 (g(V )) = 0.
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Definition Let X and Y be smooth manifolds, and let Ψ : X → Y be a smooth map. Then an
induced map Ψ∗ : C∞(Y,G (Y )) → C∞(X,G (X)) is defined as follows. For f ∈ C∞(Y,Λ0(Y )),
Ψ∗(f) = f ◦Ψ; for ω ∈ C∞(Y,Λk(Y )), k > 0,

(Ψ∗ω) (x)(v1, . . . , vk) = ω (Ψ(x)) (dΨ(v1), . . . , dΨ(vk)) for v1, . . . , vk ∈ T (X, x), x ∈ X;

Ψ∗ is extended to C∞(Y,G (Y )) by linearity.

Remarks It is easy to check that, if ω is a smooth differential form, then so is Ψ∗ω. It is clear that
Ψ∗ maps k-forms into k-forms. In fact, it is easily checked that Ψ∗ is an algebra homomorphism;
i.e. Ψ∗ is linear and

Ψ∗ (ω ∧ τ) = (Ψ∗ω) ∧ (Ψ∗τ) for all ω, τ.

Example Let (x1, . . . , xn) and (y1, . . . , ym) be coordinate functions of Rn and Rm, respectively,
and let f : Rn → Rm be a differentiable function. Then f induces a linear transformation (called
push-forward) f∗ : Rn

p → Rm
f(p), defined by

f∗(vp) = (Df(p) (v))f(p) for vp = (p, v) ∈ Rn × Rn
p

This linear transformation induces a linear transformation (called pull-back) f ∗ : Λk
(
Rm
f(p)

)
→

Λk
(
Rn
p

)
. If ω is a k-form on Rm we can therefore define a k-form f ∗ω on Rn by (f ∗ω) (p) =

f ∗ (ω(f(p))) , that is, if v1, . . . , vk ∈ Rn
p , then we have

f ∗ω(p) (v1, . . . , vk) = ω(f(p)) (f∗(v1), . . . , f∗(vk).)

Thus

(1) if f : Rn → Rm is differentiable, g : Rm → R is a function, η, ω, ω1 and ω2 are differential
forms on Rm, then

– f ∗ (dyi) =
n∑
j=1

Djfi · dxj =
n∑
j=1

∂fi
∂xj
· dxj for each 1 ≤ i ≤ m.

Proof For each vp = (p, v) ∈ Rn × Rn
p , 1 ≤ i ≤ m,

f ∗ (dyi) (p) (vp)

= dyi (f(p)) (f∗vp) = dyi (f(p))

(
n∑
j=1

vj ·Djf1(p), . . . ,
n∑
j=1

vj ·Djfm(p)

)
f(p)

= dyi (f(p))

(
m∑
k=1

n∑
j=1

vj ·Djfk(p)
∂

∂yk

)
f(p)

=
n∑
j=1

vj ·Djfi(p) =
n∑
j=1

Djfi(p) · dxj(p) (vp)

– f ∗ (ω1 + ω2) = f ∗ (ω1) + f ∗ (ω2) .

– f ∗ (g · ω) = (g ◦ f) · f ∗ω.

– f ∗ (ω ∧ η) = f ∗ω ∧ f ∗η.

(2) if f : Rn → Rn is differentiable and h : Rn → R is a function, then

f ∗ (h dx1 ∧ · · · ∧ dxn) = f ∗ (h) · (f ∗dx1) ∧ · · · ∧ (f ∗dxn)

= (h ◦ f) ·

(
n∑
j=1

Djf1 · dxj

)
∧ · · · ∧

(
n∑
j=1

Djfn · dxj

)
= (h ◦ f) · det (Djfi) · dx1 ∧ · · · ∧ dxn.

where det (Djfi) is the determinant of the n× n matrix (∂fi/∂xj)1≤i, j≤n .
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Theorem 2. Let X and Y be smooth manifolds, and let Ψ : X → Y be a smooth map. Then

d ◦Ψ∗ = Ψ∗ ◦ d.

Proof (1) If f ∈ C∞(Y,Λ0(Y )), then for v ∈ T (X, x),

[d ◦Ψ∗ (f)] (v) = [d (f ◦Ψ)] (v)

= [df ◦ dΨ] (v) (since d on functions is ordinary differential)

= [Ψ∗ (df)] (v)

= [(Ψ∗ ◦ d) (f)] (v)

(2) For ω a 1-form on Y of the type ω = df,

(d ◦Ψ∗) (ω) = d (Ψ∗ (df))

= d (Ψ∗ ◦ d (f))
= d (d ◦Ψ∗ (f)) (by (1))

= 0,

and
(Ψ∗ ◦ d) (ω) = Ψ∗ (dω) = Ψ∗ (ddf) = Ψ∗ (0) = 0.

(3) Using (1) and (2), together with the fact that Ψ∗ is an algebra homomorphism, the re-
sult is established in general by checking it locally on k-forms ω restricted to local coordinate
neighborhoods:

ω|U =
∑

i1<···<ik

ai1···ik dxi1 ∧ · · · ∧ dxik .

Definitions Let X be a smooth manifold. A smooth differential form ω on X is closed if dω = 0.
A form ω is exact if it is the differential of another form on X; that is, ω is exact if ω = dτ for
some smooth form τ. (Note that every exact form is closed, since d2 = 0. The converse question
is fundamental to our subject.) Let

� Zk(X, d) = {ω ∈ Λk(X) | dω = 0} be the vector space of closed k-form on X,

� Bk(X, d) = {ω ∈ Λk(X) | ω = dτ, for some τ ∈ Λk−1(X)} be the vector space of exact
k-form on X, and note that Bk(X, d) ⊂ Zk(X, d) because d2 = 0,

� Hk(X, d) be the kth De Rham cohomology group of X defined by

Hk(X, d) = Zk(X, d)/Bk(X, d) = {[ω] | ω ∈ Zk(X, d)},

where [ω] ⊂ Zk(X, d) is the equivalence class of ω and a closed k-form ω1 ∈ [ω] ⇐⇒
ω1−ω ∈ Bk(X, d), i.e. ω1−ω is an exact k-form. Its dimension, which we shall see is finite
for compact X, is called the kth Betti number of X.

Remark Although these cohomology groups are defined in terms of the manifold structure of
X, they are topological invariants; that is, if two manifolds are homeomorphic (by a necessarily
smooth homeomorphism), then they have isomorphic cohomology groups. In fact, these groups
can be defined directly using only the topological structure of X.

Example 1. H0(X, d) ≡ R1 if X is connected. For since there are no forms of degree less than
0, B0(X, d) = 0. Thus

H0(X, d) = Z0(X, d) = {f ∈ C∞(X,R1) | df = 0}.
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If U is any connected coordinate neighborhood of X, with coordinate functions (x1, . . . , xn), then
df = 0 on U means

0 = df =
n∑
i=1

∂

∂xi
(f) dxi;

that is, (∂/∂xi) (f) = 0 for all 1 ≤ i ≤ n. But this implies that f is constant on U. Since X
is connected, and since f is constant on each connected coordinate neighborhood in X, then f
must be constant on X; that is, Z0(X, d) = {constant functions on X} ≡ R1.

Example 2. H0(S1, d) ≡ R1, where S1 is the unit circle. For since there are no nonzero k-forms
on S1 for k > 1, Z1(S1, d) = C∞(S1,Λ1(S1)). Moreover,

B1(S1, d) = {df | f ∈ C∞(S1,R1)}.

Now, if θ denotes the polar coordinate on S1, then ∂/∂θ is a nonzero vector field on S1

and its dual 1-form dθ is a nonzero 1-form on S1 (see Figure 5.4). Furthermore, dθ is not exact
(since θ is not a periodic), but, given any 1-form ω = g(θ)dθ on S1, ω − (c dθ) is exact for some
c ∈ R1, i.e. ω ∈ [c dθ] ⇐⇒ ω− (c dθ) = df ∈ B1(S1, d) ⇐⇒ g(θ)−c = ∂f/∂θ for some periodic
function f on S1. Thus

Z1(S1, d)/B1(S1, d) ≡ {c dθ | c ∈ R1} ≡ R1.

Exercise 11. Verify the above facts by taking c =
1

2π

∫ 2π

0

g(θ) dθ.

Remarks Let ψ : X → Y be smooth. Note that

� if ω is a closed k-form on Y, since d (ψ∗ω) = ψ∗ (dω) = ψ∗ (0) = 0, ψ∗ω is a closed k-form
on X,

� if ω = dτ is an exact k-form on Y, then ψ∗ (ω) = ψ∗ (dτ) = d (ψ∗(τ)) , ψ∗ω is an exact
k-form on X,

This implies that

ψ∗ : Zk(Y, d)→ Zk(X, d), ψ∗ : Bk(Y, d)→ Bk(X, d)

and ψ∗ induces a linear map ψ̃ on cohomology, such that

ψ̃ : Zk(Y, d)/Bk(Y, d)→ Zk(X, d)/Bk(X, d); that is, ψ̃ : Hk(Y, d)→ Hk(X, d).
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If S : W → X and T : X → Y are smooth, it is easy to check that (T ◦ S)∗ = S∗ ◦T ∗, and hence
˜(T ◦ S) = S̃ ◦ T̃ :

W
S→ X

T→ Y,

Zk(W,d), Bk(W,d)
S∗
← Zk(X, d), Bk(X, d)

T ∗
← Zk(Y, d), Bk(Y, d),

Hk(W,d)
S̃← Hk(X, d)

T̃← Hk(Y, d).

Thus we have attached to each smooth manifold X new algebraic invariants Hk(X, d) such
that given smooth maps between manifolds, there are induced algebraic maps between these
algebraic objects. As in the case of the fundamental group, we are thus able to solve certain
difficult topological problems by studying their algebraic counterparts.

Now let us show that Hk(Rn, d) = 0 for all k > 0. Since Rn is diffeomorphic (isomorphic as a
smooth manifold) with the unit ball B1(0) = {x ∈ Rn | ∥x∥ < 1} about 0 in Rn, we may as well
show that Hk(B1(0), d) = 0 for all k > 0. For this we need the following technical lemma.

Lemma Let X be a smooth manifold. Then, for each k, consider the maps

C∞(X,Λk−1(X))
d−→ C∞

L99
hk−1

(X,Λk(X))
d−→ C∞

L99
hk

(X,Λk+1(X))

Suppose there exist linear maps

hj : C
∞(X,Λj+1(X))→ C∞(X,Λj(X)) (j = k − 1 or k)

such that hk ◦ d + d ◦ hk−1 is the identity map on C∞(X,Λk(X)). Then Hk(X, d) = 0; that is
every closed k-form is exact.

Proof For k ≥ 1, suppose ω ∈ C∞(X,Λk(X)) is closed. Then

ω = (hk ◦ d+ d ◦ hk−1) (ω) = hk (dω) + d (hk−1ω) = d (hk−1ω) ∈ Bk(X, d) =⇒ Hk(X, d) = 0

Remark If a sequence of such linear maps hj is defined for all j ≥ 0, the sequence hj is called a
homotopy operator.

Theorem 3 (Poincaré’s Lemma) Let U = B1(0) ⊂ Rn. Then Hk(U, d) = 0 for all k > 0.

Proof To construct maps hk−1, hk satisfying the conditions of the lemma, since these maps are
to be linear, it suffices to define hk−1 on forms ω = g dxi1 ∧ · · · ∧ dxik ; similarly for hk. For such
ω, set

hk−1 (ω) (x) =

(∫ 1

0

tk−1 g(tx) dt

)
µ =

k∑
j=1

(−1)j−1

(∫ 1

0

tk−1 g(tx) dt

)
xij dxi1∧· · ·∧d̂xij∧· · ·∧dxik

where µ =
k∑
j=1

(−1)j−1 xij dxi1 ∧· · ·∧ d̂xij ∧· · ·∧dxik , d̂xij indicates that the term dxij is omitted

and note that

dµ =
k∑
j=1

(−1)j−1 dxij ∧ dxi1 ∧ · · · ∧ d̂xij ∧ · · · ∧ dxik =
k∑
j=1

dxi1 ∧ · · · ∧ dxik = k dxi1 ∧ · · · ∧ dxik .

The map hk is defined similarly by replacing k everywhere by k + 1.
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Now, for ω = g dxi1 ∧ · · · ∧ dxik ∈ C∞(U,Λk(U)) and x ∈ U,

(d ◦ hk−1) (ω) (x) = d

[(∫ 1

0

tk−1 g(tx) dt

)
µ

]
=

n∑
ℓ=1

∂

∂xℓ

(∫ 1

0

tk−1 g(tx) dt

)
dxℓ ∧ µ+

(∫ 1

0

tk−1 g(tx) dt

)
dµ

=
n∑
ℓ=1

(∫ 1

0

tk−1 ∂

∂xℓ
(g(tx)) dt

)
dxℓ ∧ µ+

(∫ 1

0

tk−1 g(tx) dt

)
dµ

=
n∑
ℓ=1

(∫ 1

0

tk
∂g

∂xℓ
(tx) dt

)
dxℓ ∧ µ+ k

(∫ 1

0

tk−1 g(tx) dt

)
dxi1 ∧ · · · ∧ dxik ,

(hk ◦ d) (ω) (x) = hk

(
n∑
ℓ=1

∂g

∂xℓ
dxℓ ∧ dxi1 ∧ · · · ∧ dxik

)

=
n∑
ℓ=1

(∫ 1

0

tk
∂g

∂xℓ
(tx) dt

)
[xℓdxi1 ∧ · · · ∧ dxik−dxℓ ∧ µ]

Thus

(d ◦ hk−1 + hk ◦ d) (ω) (x) =

[
k

(∫ 1

0

tk−1 g (tx) dt

)
+

n∑
ℓ=1

(∫ 1

0

tk
∂g

∂xℓ
(tx)xℓ dt

)]
dxi1 ∧ · · · ∧ dxik

=

{∫ 1

0

[
ktk−1 g (tx) + tk

d

dt
(g (tx))

]
dt

}
dxi1 ∧ · · · ∧ dxik

=

{∫ 1

0

d

dt

[
tk g (tx)

]
dt

}
dxi1 ∧ · · · ∧ dxik

= tk g (tx)
∣∣1
0
dxi1 ∧ · · · ∧ dxik = g (x) dxi1 ∧ · · · ∧ dxik = ω(x)

for all x ∈ U. Since d ◦ hk−1 + hk ◦ d acts as identity on such ω, it acts by linearity as identity on
all k-forms.

Remark 1. Given a vector space V and v ∈ V, v defines a map, called interior multiplication,
i(v) : Λk(V ∗)→ Λk−1(V ∗) by

[i(v)(ω)] (v1, . . . , vk−1) = ω(v, v1, . . . , vk−1).

=⇒ i(x)(ω) = [i(
k∑
j=1

xij∂/∂xij)(ω)] =
k∑
j=1

xij [i(∂/∂xij)(g dxi1 ∧ · · · ∧ dxik)]

=
k∑
j=1

(−1)j−1

(∫ 1

0

tk−1 g(tx) dt

)
xij dxi1 ∧ · · · ∧ d̂xij ∧ · · · ∧ dxik = hk−1 (ω) (x),

that is, i is a bilinear map V ⊗Λk(V ∗)→ Λk−1(V ∗) and the map hk−1 was obtained by applying
i(x) to ω and averaging over the line through the origin in the direction x.

Remark 2. Poincaré lemma is a special case of a more general result. Let U be a smooth
manifold. Suppose there exists a smooth map Ψ : U × Iε → U, where Iε = {r ∈ R1 | −ε < r <
1 + ε}, such that Ψ(u, 1) = u for all u ∈ U, and Ψ(u, 0) = u0 for all u ∈ U ; some u0 ∈ U (see
Figure 5.5). Then Hk(U, d) = 0 for all k > 0. The map Ψ is a smooth homotopy. This theorem
says that if U is smoothly homotopic to a point, then the cohomology of U is that of a point.
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In the case covered by Poincaré lemma, a smooth homotopy is given by

Ψ(x, t) = tx (t ∈ Iε;x ∈ B1(0)).

Note that the above proof of Poincaré’s lemma works equally well for a star-shaped region, that
is, an open set U such that for some x0 ∈ U, the line segment joining x0 to any other point in U
lies completely in U.

§5.3Miscellaneous Facts

Theorem 1. Let X and Y be smooth manifolds, with X connected, and let ψ : X → Y be
smooth. Assume dψ ≡ 0. Then ψ is a constant map; that is, ψ(x) = y0 for some y0 ∈ Y and for
all x ∈ X.
Proof Let y0 ∈ ψ(X). Then ψ−1(y0) is a closed set in X. We shall show this set is also open,
hence ψ−1(y0) = X since X is connected.

Suppose x0 ∈ ψ−1(y0). It is sufficient to find an open set U in X such that x0 ∈ U and U ⊂
ψ−1(y0). Let V be a coordinate neighborhood of y0, with coordinate functions (y1, . . . , ym). Take
U to be any connected coordinate neighborhood of x0 such that U ⊂ ψ−1(V ). Let (x1, . . . , xn)
denote the coordinate functions in U. Then, for each x ∈ U, the matrix for dψ(x) relative to the
bases {∂/∂xj} for T (X, x) and {∂/∂yi} for T (Y, ψ(x)) is(

∂

∂xj
(yi ◦ ψ)

)
.

Now, dψ ≡ 0 implies (∂/∂xj) (yi ◦ ψ) ≡ 0 on U for all i, j. But this implies that yi ◦ψ is constant
on U for all i. Hence yi ◦ ψ(x) = yi ◦ ψ(x0) for all i and for all x ∈ U ; that is, ψ(x) = ψ(x0) = y0
for all x ∈ U, and U ⊂ ψ−1(y0) as required.

Definition Let X be a smooth manifold, and let V and W be smooth vector fields on X. The
bracket [V, W ] of V and W is the smooth vector field on X defined by

[V, W ] (f) = V (Wf)−W (V f) for f ∈ C∞(X, R1).

Remark [V, W ] is a vector field, because if φ is a local coordinate system with domain U and
coordinate functions (x1, . . . , xn), then

V |U =
n∑
i=1

ai

(
∂

∂xi

)
and W |U =

n∑
i=1

bi

(
∂

∂xi

)
for some ai, bi ∈ C∞(U,R).

Page 28



Geometry II Chapter 5 Lecture Notes(Continued)

Since [V, W ] is clearly bilinear, it suffices to check that [V, W ] is a vector field when V = a (∂/∂xi)
and W = b (∂/∂xj) . Then, since mixed partials are equal,

[V, W ] (f) = a
∂

∂xi

(
b
∂

∂xj
(f)

)
− b ∂

∂xj

(
a
∂

∂xi
(f)

)
= a

∂

∂xi
(b)

∂

∂xj
(f) + ab

∂

∂xi

∂

∂xj
(f)− b ∂

∂xj
(a)

∂

∂xi
(f)− ab ∂

∂xj

∂

∂xi
(f)

=

[
a
∂

∂xi
(b)

∂

∂xj
− b ∂

∂xj
(a)

∂

∂xi

]
(f) = a

∂b

∂xi

∂f

∂xj
− b ∂a

∂xj

∂f

∂xi

Since a (∂/∂xi) (b) and b (∂/∂xj) (a) ∈ C∞(X,R), [V, W ] is indeed a smooth vector field.

Exercise 12 Show that C∞(X,T (X)) is a Lie algebra under bracket multiplication, that is, the
bracket of vector fields has the following properties.

(1) [V, W ] = −[W, V ] for V, W ∈ C∞(X,T (X)),

(2) [V1 + V2, W ] = [V1, W ] + [V2, W ] for V1, V2, W ∈ C∞(X,T (X)),

(3) [c V, W ] = c [V, W ] for V, W ∈ C∞(X,T (X)), c ∈ R1,

(4) (Jacobi identity) [[V, W ], Z] + [[W, Z], V ] + [[Z, V ], W ] = 0 for V, W, Z ∈ C∞(X,T (X)).

Note that such an algebra is non-associative.

Theorem 2. Let ω be a smooth 1-form, and let V and W be smooth vector fields on X. Then

dω (V, W ) = V (ω(W ))−W (ω(V ))− ω ([V, W ]) .

Proof It suffices to verify this formula in a local coordinate neighborhood. Furthermore, since
both sides are linear in ω, we need only check it on forms of the type ω = f dg (since every

1-form is locally a sum
∑

ai dxi). For ω = f dg,

dω (V, W ) = (df ∧ dg) (V, W )

= df(V ) dg(W )− df(W ) dg(V )

= {(V f) · (Wg)− (Wf) · (V g)} .

On the other hand, we also have

{V (ω(W ))−W (ω(V ))− ω ([V, W ])}
= {V (fdg(W ))−W (fdg(V ))− fdg ([V, W ])}
= {V (f · (Wg))−W (f · (V g))− f · ([V, W ]g)}
= {(V f) · (Wg)+f · V (Wg)− (Wf) · (V g)−f ·W (V g)− f · V (Wg) + f ·W (V g)}
= {(V f) · (Wg)− (Wf) · (V g)} .

Theorem 3 (Inverse Function Theorem) Let X and Y be smooth manifolds of dimension
n. Let ψ : X → Y be a smooth map. Suppose x0 ∈ X is such that

dψ(x0) : T (X, x0)→ T (Y, ψ(x0))

is an isomorphism. Then there exists a neighborhood U0 of x0 such that

(1) ψ|U0 is injective,
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(2) ψ(U0) is open in Y, and

(3) ψ−1 : ψ(U0)→ U0 is smooth.

Proof Let φ2 be a coordinate system about ψ(x0) with domain V and coordinate functions
(y1, . . . , yn). Let φ1 be a coordinate system about x0 with domain U and coordinate functions
(x1, . . . , xn) such that

U = domainφ1 ⊂ ψ−1(V ).

Then, relative to the bases {∂/∂xi} for T (X, x0) and {∂/∂yi} for T (X,ψ(x0)), dψ(x0) has the
matrix (

∂

∂xj
(yi ◦ ψ) |x0

)
, which is nonsingular since dψ(x0) is an isomorphism.

Now transfer everything to Rn via φ1 and φ2. Let Ũ = φ1(U), Ṽ = φ2(V ), and ψ̃ : Ũ → Ṽ be

defined by ψ̃ = φ2 ◦ ψ ◦ φ−1
1 (see Figure 5.6). Then ψ̃(x) =

(
ψ̃1(x), . . . , ψ̃n(x)

)
for x ∈ Ũ , where

ψ̃i = ri ◦ ψ̃. The Jacobian of ψ̃ at x̃0 = φ1(x0) is(
∂ψ̃i
∂rj

∣∣∣∣∣
x̃0

)
=

(
∂

∂xj
(yi ◦ ψ) |x0

)
, which is nonsingular.

Hence, by the classical inverse function theorem, there exists an open set Ũ0 ⊂ Ũ containing x̃0
such that Ṽ0 = ψ̃(Ũ0) is open, and such that the equations

ψ̃i (r1, . . . , rn) = si, (1 ≤ i ≤ n)

have a unique solution in Ũ0 for each (s1, . . . , sn) ∈ Ṽ0. Moreover, this solution depends smoothly
on (s1, . . . , sn) . In other words, there exist smooth functions

hj : Ṽ0 → R1, (1 ≤ j ≤ n)

such that for each s = (s1, . . . , sn) ∈ Ṽ0,

ψ̃i (h1(s), . . . , hn(s)) = si.

Setting h(s) = (h1(s), . . . , hn(s)) for s ∈ Ṽ0, this says that h = ψ̃−1. Transferring back to X and
Y, we find the conditions of the theorem are satisfied, with

U0 = φ−1
1

(
Ũ0

)
.
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Exercise 13 Let A ⊂ Rn be a rectangle and let f : A → Rn be continuously differentiable. If
there is a number M such that |Djf

i(x)| = |
(
∂f i/∂xj

)
(x)| ≤ M for all x in the interior of A,

prove
|f(x)− f(y)| ≤ n2M |x− y|

for all x, y ∈ A, where |f(x)−f(y)| =

[
n∑
i=1

(
f i(x)− f i(y)

)2]1/2
and |x−y| =

[
n∑
j=1

(xj − yj)2
]1/2

.

Exercise 14 Suppose that f : Rn → Rn is continuously differentiable in an open set containing
a, and the differential of f is the identity matrix, i.e.

(
Djf

i(a)
)
= (δij) . Show that there is a

closed rectangle U containing a in its interior such that

(a) f(x) ̸= f(a) if x ∈ U and x ̸= a.

(b) det
(
Djf

i
)
(x) ̸= 0 for x ∈ U.

(c) |Djf
i(x)−Djf

i(a)| < 1/2n2 for all i, j, and x ∈ U.
(d) |x− y| ≤ 2|f(x)− f(y)| for x, y ∈ U.
(e) |y − f(a)| < |y − f(x)| for all y ∈ Bd/2 (f(a)) , x ∈ ∂U, where d = min

x∈∂U
|f(a)− f(x)|.

(f) for each y ∈ Bd/2 (f(a)) , there is a unique x in interior U such that f(x) = y.

Theorem 4 (Implicit Function Theorem) Let X and Y be smooth manifolds with dimX >
dimY. Let ψ : X → Y be a smooth map. Let y0 ∈ ψ(X) and let

X0 = ψ−1(y0) = {x ∈ X | ψ(x) = y0}.

Assume that for each x0 ∈ X, dψ(x) : T (X, x) → T (Y, ψ(x)) is surjective. Then X0 has a
manifold structure, whose underlying topology is the relative topology of X0 in X, and in which
the inclusion map X0 → X is smooth. Furthermore, dimX0 = dimX − dimY.

Examples

(1) The n-sphere Sn is a smooth manifold whose topology is the induced topology in Rn+1. For
let ψ : Rn+1 → R1 be defined by

ψ (r1, . . . , rn+1) =
n+1∑
i=1

r2i .

Then Sn = ψ−1(1). Since dimR1 = 1, we need only check that dψ ̸= 0 at each point of

ψ−1(1). But dψ = 2
n+1∑
i=1

ri dri. Since {dr1, . . . , drn+1} is linearly independent, dψ ̸= 0 unless

ri = 0 for all i. In particular, dψ ̸= 0 on ψ−1(1).

Note that dimSn = dimRn+1 − dimR1 = n, as expected.

(2) Let X = Rn2

, viewed as the space of all real n×n matrices. Let Y = R1, an let ψ : X → Y
be the determinant function. Then ψ−1(1) is the group of all n×n matrices of determinant
1. It is called the unimodular group. To verify that this group has a manifold structure, we
need only show that dψ ̸= 0 at each point of ψ−1(1). Now, for (rij) coordinate functions on

Rn2

,

ψ ◦ rij = det (rij) =
∑
σ∈Sn

(−1)σ r1σ(1) · · · rnσ(n).
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Hence

dψ =
n∑
j=1

∑
σ∈Sn

(−1)σ r1σ(1) · · · rj−1σ(j−1)rj+1σ(j+1) · · · rnσ(n)drjσ(j).

For each (i, j), the coefficient of drij in this sum is, up to sign, the determinant of the cofactor
of rij in (rij) . These cannot all be zero at any point of ψ−1(1) since det (rij) = 1 ̸= 0 at
such points. Since {drij | 1 ≤ i, j ≤ n} is a linearly independent set, we are done.

(3) Let X = Rn2

as in (2). Let Y be the set of all symmetric n×n real matrices. Y is a manifold,
for it can be naturally identified with Rn(n+1)/2 : merely string out in a row the entries on
and below the main diagonal. Let ψ : X → Y be defined by ψ(x) = xxt where, for each
x ∈ X, xt denotes the transpose of x. Note that ψ is smooth, since each entry of ψ(x) is a
polynomial in the entries of x. Let X0 = ψ−1(1). Thus X0 is the group of orthogonal n× n
matrices; that is, X0 is the orthogonal group.

To verify that X0 is a manifold, we must show that dψ(x) is surjective for each x ∈ X0. For
this, it suffices to show that dψ(e) is surjective, where e = (δij) is the identity matrix. For
assuming dψ(e) is surjective, let x ∈ X0. Then the map Rx : X → Y defined by Rx(y) = yx
(matrix multiplication), is a smooth map with a smooth inverse, namely Rx−1 , and hence
dRx is everywhere an isomorphism. Moreover, ψ ◦Rx = ψ for all x ∈ X0. For if y ∈ X, then

ψ ◦Rx(y) = ψ (yx) = (yx) (yx)t = yxxtyt = yeyt = yyt = ψ(y).

Hence.
dψ|x = d (ψ ◦Rx−1) |x = dψ|Rx−1 (x) ◦ dRx−1|x,

so dψ(x) is a composition of surjective maps, hence is surjective.

We still must check that dψ(e) is surjective. But

(rij ◦ ψ) (x) =
n∑

m=1

rim(x)rjm(x) 1 ≤ i ≤ j ≤ n;

hence the entries in the matrix for dψ(x), where 1 ≤ k, ℓ ≤ n, and 1 ≤ i ≤ j ≤ n, are

∂

∂rkℓ
(rij ◦ ψ)

∣∣∣∣
x

=


rjℓ(x) if k = i ̸= j,

riℓ(x) if k = j ̸= i,

2riℓ(x) if k = i = j,

0 otherwise.

In particular, the entries in the matrix for dψ(e), where 1 ≤ k, ℓ ≤ n, 1 ≤ i ≤ j ≤ n, are

∂

∂rkℓ
(rij ◦ ψ)

∣∣∣∣
e

=


rjj|e = 1 if (k, ℓ) = (i, j); i ̸= j,

rii|e = 1 if (k, ℓ) = (j, i); i ̸= j,

2rii|e = 2 if (k, ℓ) = (i, j); i = j,

0 otherwise.

Thus the square submatrix, consisting of those entries with k ≤ ℓ, is a diagonal matrix with
diagonal entries 1 and 2, and so dψ(e) has rank n(n+ 1)/2; that is, dψ(e) is surjective.

Note that dimX0 = dimX − dimY = n(n− 1)/2. In fact, for any x, y ∈ X,

(dψ|x) (y) =
d

ds
ψ(x+ sy)

∣∣∣∣
s=0

=
d

ds
(x+ sy)

(
xt + syt

)∣∣∣∣
s=0

= yxt+xyt =⇒ (dψ|e) (y) = y+yt,

which implies that the Ker (dψ|e) = {y ∈ X | y + yt = 0} has dimension n(n− 1)/2.

Page 32



Geometry II Chapter 5 Lecture Notes(Continued)

(4) Let X = the set of all complex n× n real matrices = R2n2

. Let Y = {x ∈ X | x̄t = x}. Let
ψ : X → Y be defined by ψ(x) = xx̄t. Then, as in (3), the set ψ−1(e) is a manifold. ψ−1(e)
is the unitary group. Its dimension is 2n2 − n2 = n2.

Remark Examples (2), (3), and (4) are examples of Lie groups; namely, they are groups whose
underlying spaces are C∞-manifolds and are such that the group operations are analytic.

Proof of the Implicit Function Theorem Let V be a coordinate neighborhood of y0 in
Y, with coordinate functions (y1, . . . , ym) . For x0 ∈ X0, let U be a coordinate neighborhood
of x0 in X such that U ⊂ ψ−1(V ). Let (x1, . . . , xn) denote the coordinate functions on U. We
may assume that this coordinate system is chosen so that xi(x0) = 0 (1 ≤ i ≤ n). Now dψ
surjective at x0 means that the m× n matrix ((∂/∂xj)(yi ◦ ψ)|x0) has rank m. By renumbering
the coordinate functions on U if necessary, we may assume that the last m columns of this matrix
are independent, that is, that this matrix has the form

(∗ ... J),

where J is a nonsingular m×m matrix. Let ψ̃ : U → Rn−m × V be defined by

ψ̃(x) = (x1(x), . . . , xn−m(x), ψ(x)) (x ∈ U).

Then dψ(x0) has matrix (
I 0
∗ J

)
,

where I is the identity (n − m) × (n − m) matrix. Hence dψ(x0) is an isomorphism. By the
inverse function theorem, there exists a neighborhood U0 of x0 such that ψ̃|U0 is injective, ψ̃(U0)
is open in Rn−m × V, and ψ̃−1 : ψ̃(U0) → U0 is smooth. We may assume that ψ̃(U0) is of the
form W0 × V0, where 0 ∈ W0 and y0 ∈ V0, since open sets of this type form a basis for the
topology on Rn−m × V (see Figure 5.7). Now note that ψ̃−1 (W0 × {y0}) = X0 ∩ U0. Since ψ̃|U0

is a homeomorphism, ψ̃|X0∩U0 maps X0 ∩ U0 homeomorphically onto W0 × {y0} ∼= W0 ⊂ Rn−m.
Thus ψ̃|X0∩U0 is a coordinate system about x0 in X0.

To see that such coordinate systems actually define a smooth manifold structure on X0, we must
check that they behave properly on overlaps. So suppose

ψ̃ : U0 → W0 × V0 and φ̃ : U1 → W1 × V1

are such that (X0 ∩ U0) ∩ (X0 ∩ U1) ̸= ∅ (see Figure 5.8). Since ψ̃−1 is smooth, so is

φ̃ ◦ ψ̃−1
∣∣∣
ψ̃(U0∩U1)

.
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Restricting to ψ̃(X0 ∩ U0 ∩ U1) = ψ̃ (U0 ∩ U1) ∩
(
Rn−m × {y0}

)
, it follows that

φ̃ ◦ ψ̃−1
∣∣∣
ψ̃(X0∩U0∩U1)

: ψ̃(X0 ∩ U0 ∩ U1)→ φ̃(X0 ∩ U0 ∩ U1)

is smooth. Hence X0 is a smooth manifold, of dimension n−m.

Definition A submanifold of a smooth manifold Y is a pair (X, ψ), whereX is a smooth manifold
and ψ : X → Y is an injective smooth map such that dψ is injective at each point of X.

Examples The manifold X0 of the previous theorem, together with the inclusion map X0 → X,
is a submanifold of X. In particular, Sn is a submanifold of Rn+1, and each of the Lie groups
discussed above are submanifold of the space of all n×n real (complex in the case of the unitary
group) matrices.

Remark Note that ψ : X → Y being injective does not imply that dψ is injective at each point.
For example, the smooth map ψ : R1 → R1 defined by ψ(x) = x3 is injective, and yet dψ(0) = 0.
Note also that (X, ψ) being a submanifold of Y does not imply that ψ is a homeomorphism of
X onto ψ(X) with the relative topology.

Example Consider the torus

S1 × S1 = {(z1, z2) | z1, z2 are complex numbers with |z1| = |z2| = 1}.

Define ψ : R1 → S1×S1 by ψ(t) =
(
e2πit, e2πiαt

)
, where α is an irrational number. Then

(
R1, ψ

)
is a submanifold of S1×S1. However, ψ(R1) is dense in S1×S1, so if V is an open neighborhood

of ψ(t) in S1×S1, since V ∩ ψ(R1) = V, V ∩ψ(R1) ̸= ψ(U) =
(
ψ−1

)−1
(U) for any open interval

U ⊂ R1 containing t, ψ−1 : ψ(R1) → R1 is not continuous and ψ is not a homeomorphism.
This submanifold is called the skew line on the torus. Representing the torus as a square with
opposite sides identified, ψ maps R1 as in Figure 5.9.
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Theorem 5 Let (X, ψ) be a compact submanifold of Y. Suppose X has dimension m and Y has
dimension n, where m ≤ n. Then for each x0 ∈ X, there exists a coordinate system φY : V → Rn

about ψ(x0) with coordinate functions (y1, . . . , yn) , such that

ψ(X) ∩ V = {y ∈ V | ym+1(y) = · · · = yn(y) = 0}.

Furthermore, a coordinate system φX : U → Rm can be chosen about x0 with coordinate
functions (x1, . . . , xm) , such that U ⊂ ψ−1(V ) and such that xj = yj ◦ψ for all j ≤ m. Thus, on
U,

yj ◦ ψ =

{
xj for 1 ≤ j ≤ m,

0 for m < j ≤ n.

Proof Using the Inverse Function Theorem and the Implicit Function Theorem (in Michael
Spivak Calculus of Manifolds), one can prove the following.

Proposition LetM ⊂ N, dimM = m < n =dim N, be a smooth submanifold and let p ∈M be
arbitrary. Then there exists a chart (φ = (x1, . . . , xn), U) on N, such that U ∩M neighbourhood
of p in M and

xm+1(q) = · · · = xn(q) = 0 for all q ∈ U ∩M.

The first m entries in φ are a local coordinate system on M near p.

Proof

� fix p ∈ M ⊂ N, choose local coordinates φ′ = (x1, . . . , xn) on N and ψ′ = (y1, . . . , ym) on
M covering p

� M being a submanifold means inclusion i :M → N is an embedding, thus dip is in particular
injective

� hence, the Jacobi matrix of i at p in local coordinates φ′, ψ′,(
∂xi
∂yj

(p)

)
ij

∈ Mat (n×m, R)

has maximal rank m

� w.l.o.g. (after possibly re-ordering the xi) assume that first m rows are linearly independent

� implicit function theorem =⇒ (x1, . . . , xm) are local coordinates on some open set V ⊂M

� after possibly shrinking V obtain that

q ∈ i(M) ⇐⇒ xk(q) = fk(x1(q), . . . , xm(q)),

where fk : (x1, . . . , xm)(V )→ R is uniquely determined for all m+ 1 ≤ k ≤ n

� choose U ⊂ N open, such that (x1, . . . , xn) are defined on U and U ∩M = V, define for
m+ 1 ≤ k ≤ n

Fk := xk − fk(x1, . . . , xm)

� define new coordinate system (φ, U) on N fulfilling statement of this proposition as follows:

φ = (x1, . . . , xm, Fm+1, . . . , Fn)

� Jacobi matrix of φ at p with respect to the coordinates (x1, . . . , xn) is of the form(
Im×m 0
A I(n−m)×(n−m)

)
for some A ∈ Mat ((n−m)×m, R),

hence invertible
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� hence, φ is a local diffeomorphism and thereby defines a local coordinate system on N
which, by construction, fulfils

φ(U ∩M) = φ(V ) = (x1, . . . , xm, 0, . . . , 0).

as required

Remark When a coordinate system φY is chosen as in Theorem 5, ψ(X)∩V is said to be a slice
in ψY . Note that the coordinate system obtained in the proof of Theorem 4 are of this type.

Corollary If (X, ψ) is a compact submanifold of Y, then

ψ : X → ψ(X)

is a homeomorphism. Moreover, for each submanifold obtained by applying the implicit function
theorem, the inclusion map is a homeomorphism.

Proof Since ψ(X) is Hausdorff in the relative topology, the first statement is proved.

Definition Let X be a smooth manifold, and let V be a smooth vector field on X. An integral
curve of V is a smooth curve α : (a, b)→ X (Figure 5.10), such that the tangent vector to α at
each point is equal to the value of V at that point, that is,

α̇(t) = V (α(t)) for all t ∈ (a, b).

Remark Let φ : U → Rn be a local coordinate system on X, with coordinate functions
(x1, . . . , xn). Let α : (a, b) → U be a smooth curve in U. Then, by definition, α̇(t) = dα(d/dt).
Hence, the ith component of α̇ relative to the basis {∂/∂xj} is

dxi (α̇) = dxi

(
dα

(
d

dt

))
= d (xi ◦ α)

(
d

dt

)
=

d

dt
(xi ◦ α) ,

so that

α̇ =
n∑
i=1

d

dt
(xi ◦ α)

∂

∂xi

Thus α is an integral curve of a vector field V =
n∑
i=1

ai (∂/∂xi) if and only if

(∗) d

dt
(xi ◦ α) = ai for each 1 ≤ i ≤ n.

Thus, to find integral curves of a given vector field V on a coordinate neighborhood U, we need to
solve the system (∗) of differential equations. Solutions are guaranteed by the following classical
theorem.
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Theorem 6 Let W be an open set in Rn, let w0 ∈ W, and let ai ∈ C∞(W,R1), (1 ≤ i ≤ n).
Then there exists an open set W0 ⊂ W about w0, an interval (−ε, ε) ⊂ R1, and a smooth map
ψ : (−ε, ε)×W0 → W such that, for each w ∈ W0, ψ|(−ε, ε)×{w} is a solution of the equations

dfi
dt

= ai (f1(t), . . . , fn(t)) (1 ≤ i ≤ n)

subject to the initial conditions fi(0) = wi; that is, if αw : (−ε, ε)→ W is defined by

αw(t) = ψ(t, w),

then for 1 ≤ i ≤ n,

(Eqn)
d

dt
(ri ◦ αw) (t) = ai (r1 ◦ αw(t), . . . , rn ◦ αw(t)) for all t ∈ (−ε, ε),

(IC) (ri ◦ αw) (0) = ri(w) for all 1 ≤ i ≤ n.

Furthermore, αw is the unique function αw : (−ε, ε)→ W satisfying (Eqn) and (IC).

Reinterpreting Theorem 6 in terms of vector fields, we obtain Theorem 7.

Theorem 7 Let X be a smooth manifold and let V be a smooth vector field on X. Let x0 ∈ X.
Then there exist an open set U about x0, (−ε, ε) ⊂ R1, and a smooth map ψ : (−ε, ε)×U → X,
such that for each u ∈ U, the curve

αu : (−ε, ε)→ X

defined by αu(t) = ψ(t, u) is the unique integral curve from (−ε, ε) into V satisfying αu(0) = u.

Furthermore, the smooth maps ψt : U → X, defined for each t ∈ (−ε, ε) by ψt(u) = ψ(t, u),
have the properties

(1) ψt1+t2 = ψt1 ◦ ψt2 on ψ−1
t2
(U) whenever t1, t2 and t1 + t2 ∈ (−ε, ε),

(2) ψ−t = ψ−1
t on ψt(U) ∩ U for each t ∈ (−ε, ε).

Proof Let W be a coordinate system about w0, with coordinate functions (x1, . . . , xn). Then,

on W, V =
n∑
i=1

ai (∂/∂xi) for some smooth functions ai ∈ C∞(W,R1).

By Theorem 6, there exist U ⊂ W, (−ε, ε) ⊂ R1, and ψ : (−ε, ε)×U → W ⊂ X with the required
properties. The last statement is a consequence of the uniqueness of the solution; namely, it is
easy to check that

t1 → ψ(t2 + t1, u) and t1 → ψ(t1, ψt2(u))

are both integral curves of V which send 0 into ψt2(u), and hence they are equal; that is,
ψt1+t2 = ψt1 ◦ ψt2 . Similarly, ψ−t = ψ−1

t .

Remark Properties (1) and (2) of Theorem 7 express the fact that ψt is a local one-parameter
group of transformations.

Remark The previous theorem guarantees the existence locally of integral curves for vector
fields. However, it is not always possible to obtain integral curves globally; that is, it is not
possible in general to find a curve α : R1 → X through x0 such that α is an integral curve of a
given vector field V. For example, let X = R2 \ {0} and let V = ∂/∂r1. Then the integral curve
of V through (−1, 0) cannot be extended to values of t ≥ 1. (see Figure 5.11).
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However, if X is compact, then every vector field admits through each point integral curves
defined on all of R1.

Remark In studying the motion of a particle in R3 under the influence of a force field F, Newton’s
law tells us that the path of motion is a curve α(t) = (x1(t), x2(t), x3(t)) such that

m
d2xi(t)

dt2
= Fi (1 ≤ i ≤ 3),

where m is the mass of the particle. Setting pi = m(dxi/dt), we have

dxi
dt

=
pi
m
,

dpi
dt

= Fi (1 ≤ i ≤ 3).

But (x1, x2, x3, p1, p2, p3) may be regarded as coordinate functions on the cotangent bundle of
R3. Hence the orbit of the particle is just the projection onto R3 of the integral curve of a vector
field on the cotangent bundle. In fact, the cotangent bundle is the natural domain for the study
of mechanics on a manifold.

Remark The use of integral curves provides a geometric interpretation of the bracket of two
vector fields. Let V and W be smooth vector fields on X, and let x0 ∈ X. Suppose we move
along the integral curve of V through x0 until the parameter has moved from 0 to

√
s; then

move along an integral curve of W from 0 to
√
s; then move back along an integral curve of V,

the parameter now varying from 0 to −
√
s; and finally move back along an integral curve of W

from 0 to −
√
s; as in Figure 5.12. We will not in general return to our starting point. As s→ 0,

our end point will trace out a curve through x0. The bracket [V, W ](x0) is precisely the tangent
vector to this curve.
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Definition Let V be an n-dimensional real vector space. Then Λn(V ∗) has dimension 1, so it is
isomorphic to R1. Thus Λn(V ∗)\{0} is disconnected; it is the union of two connected components.
An orientation of V is a choice of one of these components. An oriented vector space is a pair
(V, A ) where A is an orientation of V.

Remarks Thus each vector space V has two possible orientations. An ordered basis {φ1, . . . , φn}
of V ∗ determines an orientation of V ; namely, the component of Λn(V ∗) in which φ1 ∧ · · · ∧ φn
lies. Given two ordered bases {φ1, . . . , φn} and {φ′

1, . . . , φ
′
n} of V ∗, with φ′

i =
∑

cjiφj, then

φ′
1 ∧ · · · ∧ φ′

n = det (cij)φ1 ∧ · · · ∧ φn

Hence two ordered bases determine the same orientation if and only if the determinant of the
change of basis matrix is positive. In particular, if {φ1, . . . , φn} is an ordered basis for V ∗, then
the orientation determined by the basis is different from the one determined by

{φ2, φ1, φ3, . . . , φn}

In R2, an orientation amounts to a sense of rotation. The orientation determined by {dr1, dr2}
gives the usual sense of positive rotation on R2; namely, so that the rotation sending ∂/∂r1 into
∂/∂r2 is one of +π/2. The orientation determined by {dr2, dr1} defines the opposite sense of
rotation, so that ∂/∂r2 → ∂/∂r1 is a rotation of +π/2. (see Figure 5.13). Similarly, an orientation
of R3 amounts to choosing either the right-handed rule or the left-handed rule for cross products.

Definition A smooth manifold (X, Φ) is orientable if there exists a subset Φ′ ⊂ Φ such that

(1) {domainφ}φ∈Φ is a covering of X, and
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(2) If φ1 and φ2 are coordinate systems in Φ′ with domains U and V and coordinate functions
(x1, . . . , xn) and (y1, . . . , yn) respectively, then the function λ : U ∩ V → R1 determined by

dx1 ∧ · · · ∧ dxn = λ dy1 ∧ · · · ∧ dyn is everywhere positive.

An orientation of an orientable manifold (X, Φ) is a choice of subset Φ′ ⊂ Φ satisfying (1) and
(2) and maximal with respect to (2). An oriented manifold is a triple (X, Φ, Φ′) where(X, Φ) is
an orientable manifold and Φ′ is an orientation of (X, Φ).

Remark The function λ determined by dx1 ∧ · · · ∧ dxn = λ dy1 ∧ · · · ∧ dyn is just the Jacobian
determinant of φ1 ◦ φ−1

2 ; that is,

λ = det

(
∂

∂yj
(xi)

)
= det d

(
φ1 ◦ φ−1

2

)
.

In view ofthis, it is easy to check that a connected orientable manifold (X, Φ) has exactly two
orientations Φ′ and Φ′′, and that Φ is the disjoint union Φ′ ∪ Φ′′.

Remark A more sophisticated approach to orientation of manifolds is to consider the set Λn(X).
This set can be given the structure of an (n+1)-dimensional manifold as follows. Let φ : U → Rn

be a local coordinate system on X, with coordinate functions (x1, . . . , xn). Then a coordinate
system φ̃ : π−1(U)→ Rn+1 is defined on π−1(U) by

φ̃(ω) = (φ(π(ω)), λ(ω)) for each ω ∈ π−1(U),

where λ : π−1(U)→ R1 is the function such that

λ(ω) dx1 ∧ · · · ∧ dxn = ω for each ω ∈ π−1(U).

In terms of Λn(X), we have the following characterization of orientability.

Theorem 8 Let X be a connected smooth manifold (see Figure 5.14). Let

O =
⋃
x∈X

{0 element in Λn(T ∗(X, x))} ⊂ Λn(X).

Then either Λn(X) \ O is connected, in which case X is not orientable, or Λn(X) \ O breaks
up into exactly two connected components, in which case X is orientable. An orientation of an
orientable manifold X amounts to a choice of one of these two components.

Proof We omit the proof.
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Theorem 9 Let (X, Φ) be a smooth manifold of dimension n. Suppose there exists a smooth
n-form ω on X which is nowhere zero. Then X is orientable.

Proof Let φ ∈ Φ be a local coordinate system on X, with connected domain U and coordinate
functions (x1, . . . , xn). Since dimΛn(X) = 1, there exists a smooth function fφ : U → R1 such
that

ω = fφ dx1 ∧ · · · ∧ dxn
Since ω is never zero, neither is fφ. Thus either fφ > 0 everywhere, or fφ < 0 everywhere. Let

Φ′ = {φ ∈ Φ | fφ > 0}.

Then Φ′ is an orientation of X. Φ′ covers X because if x ∈ X and φ is a coordinate system about
x with fφ < 0, then the new coordinate system φ̃ about x, obtained by changing the sign of one
of the coordinate functions of φ, has fφ̃ > 0. Furthermore, if φ, ψ ∈ Φ′ have domains U and V
and coordinate functions (x1, . . . , xn) and (y1, . . . , yn) respectively, then on U ∩ V

dy1 ∧ · · · ∧ dyn =
1

fψ
ω =

fφ
fψ

dx1 ∧ · · · ∧ dxn

and fφ/fψ > 0. Maximality is clear.

Theorem 10 Let (X, ψ) be an n-dimensional submanifold ofRn+1. Suppose (X, ψ) admits a
nonzero “normal vector field”; that is, suppose there exists a smooth map V : X → T (Rn+1) such
that for each x ∈ X, V (x) is a nonzero vector in T (Rn+1, ψ(x)) perpendicular to dψ(T (X, x))
(see Figure 5.15). Then X is orientable.

Remark Perpendicularity in T (Rn+1, ψ(x)) means with respect to the inner product ⟨ , ⟩ given
by

⟨ ∂
∂ri

,
∂

∂rj
⟩ = δij.

Proof of Theorem 10 Given a normal vector field V, consider the n-form µ defined at points
of ψ(X) by

µ = i(V ) dr1 ∧ · · · ∧ drn+1.

Let ω = ψ∗µ. Then ω is a smooth n-form on X. By Theorem 9, it suffices to show ω is never zero
onX. Suppose it were; that is, suppose ω(x) = 0 for some x ∈ X. Then for all v1, . . . , vn ∈ T (X, x)

0 = ω(x) (v1, . . . , vn)

= ψ∗µ(x) (v1, . . . , vn)

= µ (ψ(x)) (dψ(v1), . . . , dψ(vn))
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Now each vector w ∈ T (Rn+1, ψ(x)) is of the form w = dψ(v) + cV (x) for some v ∈ T (X, x),
c ∈ R1. Thus, for arbitrary vectors

wi = dψ(vi) + ciV (x) for each 1 ≤ i ≤ n.

we have

µ (ψ(x)) (w1, . . . , wn) = µ (ψ(x)) (dψ(v1) + c1V (x), . . . , dψ(vn) + cnV (x))

= µ (ψ(x)) (dψ(v1), . . . , dψ(vn))

+
n∑
j=1

cjµ (ψ(x)) (dψ(v1), . . . , dψ(vj−1), V (x), dψ(vj+1), . . . dψ(vn))

All other terms are zero since V (x) appears twice as an argument, and µ is skew symmetric.
Moreover, the first term vanishes by the above discussion, and each term of the sum is zero
because

µ (ψ(x)) (. . . , V, . . .) = i(V ) dr1 ∧ · · · ∧ drn+1 (. . . , V, . . .) = dr1 ∧ · · · ∧ drn+1 (V, . . . , V, . . .) = 0.

Since w1, . . . , wn ∈ T (Rn+1, ψ(x)) were arbitrary, this shows that µ(ψ(x)) = 0. But

µ = i(V ) dr1 ∧ · · · ∧ drn+1

=
n∑
j=1

(−1)j−1 (V rj) dr1 ∧ · · · ∧ drj−1 ∧ drj+1 ∧ · ∧ drn+1

Since V (x)rj ̸= 0for some 1 ≤ j ≤ n, µ(ψ(x)) ̸= 0. This contradiction proves the theorem.

Corollary The unit sphere Sn is orientable.

Proof Sn admits a nonzero normal vector field, namely, the restriction to Sn of the unit vector
field on Rn+1 \ {0} pointing radially outward.

Remark It can be shown that every compact connected n-dimensional submanifold of Rn+1

separates Rn+1 into two connected pieces, one bounded and one unbounded. Thus every such
submanifold admits a unit normal vector field (for example, the one pointing into the unbounded
component), hence is orientable.

Remark A nonorientable 2-dimensional manifold is called a one-sided surface.

Example 1. The Möbius strip S, obtained from an open rectangular strip by giving the strip a
half twist and glueing the ends, is nonorientable. Note that a nonzero normal vector field cannot
exist on S, for if such a field varies continuously along the center line, it would have to point in
the opposite direction after a full circuit.

Example 2. The Klein bottle K, obtained from I × I by identifying opposite sides (to get a
cylinder) and then identifying the other pair of sides with a twist (Figure 5.16), is nonorientable.
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This surface cannot be represented as a submanifold of R3. However, there does exist a map
ψ : K → R3 with dψ injective at each point, and such that ψ is one-to-one except along a circle
in R3 (see Figure 5.17).

Definition Let X be a topological space, and let U be an open covering of X. The covering U
is locally finite if, for each x ∈ X, there exists an open set Wx containing x such that

{U ∈ U | U ∩Wx ̸= ∅} is a finite set.

Definition A topological space X is paracompact if every open covering of X has a locally finite
refinement; that is, if for every open covering U , there exists a locally finite open covering V
such that for each V ∈ V there exists a U ∈ U with V ⊂ U.

Remark It can be shown that all metric spaces are paracompact. Also, every regular topological
(where ) space whose topology has a countable basis is paracompact. Recall that a topological
space X is a regular space if, given any closed subset F and any point x /∈ F of X, there exist
disjoint open neighbourhoods U and V of x and F respectively.

Partition of Unity

Let f : R→ R be defined by

f(x) =

{
e−1/x if x > 0,

0 otherwise.

Then f is smooth, i.e. infinitely differentiable, on R. For a < b, let g : R → R be defined by
g(x) = f(x− a)f(b− x). Then g is smooth and

g(x) =

{
e−1/(x−a) e−1/(b−x) if a < x < b,

0 otherwise.

x

y

Let h : R→ R be defined by

h(x) =

∫∞
x

g(t) dt∫∞
−∞ g(t) dt

for x ∈ R.
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x

y

Then 
h(x) = 1 if x ∈ (−∞, a],
0 < h(x) < 1 if x ∈ (a, b),

h(x) = 0 if x ∈ [b,∞).

For each p ∈ Rn and for any 0 < r < t, let Br(p) and Bt(p) be concentric balls of radius r and
t, respectively. Let ζ : R→ R be the linear function such that ζ(r2) = a and ζ(t2) = b, and let

ψ(x) = h(ζ(∥x− p∥2)) for x ∈ Rn.

Then ψ : Rn → R is smooth, 0 ≤ ψ(x) ≤ 1 for all x ∈ Rn and

ψ(x) =

{
1 if x ∈ Br(p),

0 if x /∈ Bt(p).

Theorem Suppose K is a compact subset of Rn, and {Vα} is an open cover of K. Then there
exist functions ψ1, . . . , ψs ∈ C∞(Rn), the space of smooth functions on Rn, such that

(a) 0 ≤ ψi ≤ 1 for 1 ≤ i ≤ s;

(b) each ψi has its support in some Vα, i.e. {x ∈ Rn | ψi(x) ̸= 0} ⊂ Vα, and

(c)
s∑
i=1

ψi(x) = 1 for every x ∈ K.

Because of (c), {ψ} is called a partition of unity, and (b) is sometimes expressed by saying that
{ψi} is subordinate to cover {Vα}.

Corollary If f ∈ C (Rn) is a continuous function in Rn and the support of f lies in K, then

f =
s∑
i=1

ψif.

Each ψif has its support in some Vα.

Proof For each x ∈ K, since {Vα} is an open cover of K, there exist Vα(x) ∈ {Vα}, open balls
B(x) and W (x), centered at x, such that

(∗) B(x) ⊂ W (x) ⊂ W (x) ⊂ Vα(x).

Since K is compact and {B(x) | x ∈ K} is an open cover of K, there are points x1, . . . , xs ∈ K
such that

K ⊂ B(x1) ∪ · · · ∪B(xs).
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By (∗), there are functions ϕ1, . . . , ϕs ∈ C (Rn), such that

ϕi(x) =

{
1 if x ∈ B(xi)

0 if x ∈ Rn \W (xi)

and 0 ≤ ϕi(x) ≤ 1 for all x ∈ Rn for each 1 ≤ i ≤ s.

Vα

W (xi) W (xj)

B(xi) B(xj)

xi xj

Define

ψ1 = ϕ1

(†) ψi+1 = (1− ϕ1) · · · (1− ϕi)ϕi+1 for i = 1, . . . , s− 1.

Properties (a) and (b) are clear. The relation

(††) ψ1 + · · ·+ ψi = 1− (1− ϕ1) · · · (1− ϕi)

is trivial for i = 1. If (†) holds for some i < s, addition of (†) and (††) yields (††) with i + 1 in
place of i. It follows that

s∑
i=1

ψi(x) = 1−
s∏
i=1

[
1− ϕi(x)

]
for x ∈ Rn.

If x ∈ K, then x ∈ B(xj) for some 1 ≤ j ≤ s, hence ϕj(x) = 1,
s∏
i=1

[
1 − ϕi(x)

]
= 0 and

s∑
i=1

ψi(x) = 1. This proves (c).

Theorem Let A ⊂ Rn and let O be a collection of open subsets of Rn covering A. Then there is
a collection Φ of continuous functions φ defined in an open set containing A, with the following
properties:

(1) For each x ∈ A we have 0 ≤ φ(x) ≤ 1.

(2) For each x ∈ A there is an open set V containing x such that all but finitely many of φ ∈ Φ
are 0 on V.

(3) For each x ∈ A we have
∑
φ∈Φ

φ(x) = 1 (by (2) for each x this sum is finite in some open set

containing x).
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(4) For each φ ∈ Φ there is an open set U ∈ O such that φ = 0 outside of some closed set
contained in U.

A collection Φ satisfying (1) to (3) is called a continuous partition of unity for A. If Φ also satisfies
(4), it is said to be subordinate to the cover O. In this chapter we will only use continuity of the
functions φ.

Proof

Case 1. A is compact.

We use an alternative method to construct a continuous partition of unity as follows.

Since A ⊂ Rn is compact, there exists an open ball BR(0) of radius R centered at 0 such that
A ⊂ BR(0). By taking U∩BR(0) for each U ∈ O, we may assume that O is a collection of bounded
open subsets covering A. Again since A is compact, there exist open sets U1, . . . , Um ∈ O such
that

(∗) A ⊂
m⋃
j=1

Uj and A \
(
U1 ∪ · · · ∪ Ûi ∪ · · · ∪ Um

)
̸= ∅ ∀ 1 ≤ i ≤ m,

where Ûi means the term Ui is omitted.

Since A is compact and by (∗), the set C1 = A \
m⋃
j=2

Uj is a compact subset of U1 with

r1 = d(∂U1, C1) = inf
x∈∂U1, y∈C1

d(x, y) > 0.

Let

D1 = {x ∈ U1 | d(x, ∂U1) = inf
y∈∂U1

d(x, y) ≥ r1/2},

W1 = {x ∈ U1 | d(x, ∂U1) = inf
y∈∂U1

d(x, y) ≥ r1/4},

ψ1(x) =


1 if x ∈ D1,

0 if x /∈ W1,

0 ≤ ψ1(x) ≤ 1 ∀x ∈ Rn.

Note that D1 is a compact subset of U1, C1 ⊂ IntD1 and A ⊂
(
IntD1

)
∪

m⋃
j=2

Uj.

Suppose that D1, . . . , Dk have been chosen so that A ⊂
( k⋃
j=1

IntDj

)
∪
( m⋃
j=k+1

Uj
)
. Let

Ck+1 = A \ (IntD1 ∪ · · · ∪ IntDk ∪ Uk+2 ∪ · · · ∪ Um).

Then Ck+1 ⊂ Uk+1 is a compact with

rk+1 = d(∂Uk+1, Ck+1) = inf
x∈∂Uk+1, y∈Ck+1

d(x, y) > 0.
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Let

Dk+1 = {x ∈ Uk+1 | d(x, ∂Uk+1) = inf
y∈∂Uk+1

d(x, y) ≥ rk+1/2},

Wk+1 = {x ∈ U1 | d(x, ∂U1) = inf
y∈∂U1

d(x, y) ≥ rk+1/4},

ψk+1(x) =


1 if x ∈ Dk+1,

0 if x /∈ Wk+1,

0 ≤ ψk+1 ≤ 1 ∀x ∈ Rn.

Note that Dk+1 is a compact subset of Uk+1, Ck+1 ⊂ IntDk+1 and A ⊂
k+1⋃
j=1

IntDj ∪
m⋃

j=k+2

Uj.

We obtain a collection of compact subsets {Di}mi=1, {Wi}mi=1 and a collection of nonnegative
continuous functions {ψi}mi=1 such that

A ⊂
m⋃
i=1

IntDi ⊂
m⋃
i=1

Di ⊂
m⋃
i=1

IntWi ⊂
m⋃
i=1

Wi ⊂
m⋃
i=1

Ui,{
ψi(x) = 1 if x ∈ Di,

ψi(x) = 0 if x /∈ Wi.
=⇒

m∑
j=1

ψj(x) > 0 for all x ∈
m⋃
i=1

Di.

∂Ui

Wi

Ci

Di

For each 1 ≤ i ≤ m, and for x ∈
m⋃
i=1

Di, if we let

φi(x) =
ψi(x)∑m
j=1 ψj(x)

,

then Φ = {φ1, . . . , φm} is the desired partition of unity since {D1, . . . , Dm} covers A.
Case 2. A = A1 ∪ A2 ∪ A3 ∪ · · · , where each Ai is compact and Ai ⊂ IntAi+1.

For each i ∈ N, let

Bi =

{
A1 if i = 1,

Ai \ IntAi−1 if i ≥ 2,

and

Oi =

{
{U ∩ IntA3 | U ∈ O} if 1 ≤ i ≤ 2,

{U ∩ (IntAi+1 \ Ai−2) | U ∈ O} if i ≥ 3.

Then
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· · ·
A1

Ai−2

Ai−1

Ai

Ai+1

· · ·Bi

(i) each Bi is compact and A =
∞⋃
i=1

Bi,

(ii) each Oi is a collection of bounded open sets covering Bi, i.e. Bi ⊂
⋃
U∈Oi

U.

(iii) U ∩ V = ∅ for all U ∈ Oi, V ∈ Oj with j > i+ 2 ⇐⇒ j − 1 > i+ 1.

Thus, by case 1, there is a partition of unity Φi for Bi, subordinate to Oi.

Note that for each x ∈ A, since x ∈ Bi for some Bi and since Φi is a partition of unity subordinate
to Oi, so there exists φ ∈ Φi such that φ(x) > 0, and by (iii),

φ(x) = 0 ∀φ ∈ Φj with j > i+ 2 ⇐⇒ j − 1 > i+ 1,

and the sum
σ(x) =

∑
φ∈Φi, all i

φ(x)

is a finite sum in some open set containing x, and σ(x) > 0 for all x ∈ A.
Let

Φ =
∞⋃
i=1

{
φ(x)

σ(x)
| φ ∈ Φi

}
.

Then Φ is a partition of unity subordinate to the open cover O.

Case 3. A is open.

Let

Ai = {x ∈ A | ∥x∥ ≤ i and d(x, ∂A) ≥ 1

i
},

where d(x, ∂A) = the distance from x to the boundary ∂A. Note that Ai is compact, Ai ⊂ IntAi+1

for all i ≥ 1, and

∞⋃
i=1

Ai = lim
i→∞

Ai = A.

By applying the case 2, we obtain a partition of unity subordinate to the open cover O.
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Case 4. A is arbitrary.

Let B be the union of all U in O. By case 3 there is a partition of unity for B; this is also a
partition of unity for A.

Definition Let X be a smooth manifold. A smooth partition of unity on X is a pair (V , F )
where V is a locally finite covering of X and F = {fV }V is a collection of smooth real-valued
functions on X such that

(1) fV (x) ≥ 0 for each V ∈ V , x ∈ X,
(2) for each V ∈ V , the support of fV = the closure of the set {x ∈ X | fV (x) ̸= 0} is contained

in V, i.e.
supp (fV ) = {x ∈ X | fV (x) ̸= 0} ⊂ V

(3)
∑
V ∈V

fV (x) = 1 for each x ∈ X. (Note that this sum makes sense since for each x ∈ X,

fV (x) = 0 for all but finitely many V ∈ V .)

Theorem 11 Let X be a paracompact manifold. Then, given any open covering U of X, there
exists a smooth partition of unity F = {fV }V on X such that V is a refinement of U .

Proof Since X is a manifold, there is a refinement W of U such that each open set W ∈ W is
a coordinate neighborhood, and W̄ is compact. Since X is paracompact, there is a locally finite
refinement V of the open covering W . Note that V is a refinement of U , and if V ∈ V , then V̄
is compact, and V is a coordinate neighborhood.

Suppose we can “shrink the covering V slightly” and still get a covering. That is, suppose for
each V ∈ V , we can choose an open set α(V ) such that α(V ) ⊂ V and {α(V )}V ∈V is a covering.
We then proceed as follows. Since V ∈ V is a coordinate neighborhood, and α(V ) is a compact
set in V, we can find a smooth nonnegative function gV : X → R1 such that

gV (x) =

{
1 if x ∈ α(V ),

0 if x /∈ V.

Let g =
∑
V ∈V

gV . Then g is well defined and in C∞(X, R1) because V is locally finite. Furthermore,

g never vanishes on X because {α(V )}V ∈V is a covering; hence fV = gV /g ∈ C∞(X, R1). Let
F = {fV }V ∈V ; then (V , F ) is a smooth partition of unity.

To “shrink the covering V slightly,” proceed as follows. Consider the family B of all functions
β such that

(1) domain of β is a subset Dβ of V ;

(2) if V ∈ Dβ, then β(V ) is an open set in V such that β(V ) ⊂ V ; and

(3) the collection of open sets {β(V ) | V ∈ Dβ} ∪ {V | V /∈ Dβ} is an open covering of X.

The family B is partially ordered:

β < γ if Dβ ⊂ Dγ and V ∈ Dβ =⇒ β(V ) = γ(V ).

We leave the following point set argument to the reader: since V is locally finite, the maximum
principle implies that B has a maximal element α and Dα = V , so that α is the required
shrinkage.

Page 49



Geometry II Chapter 5 Lecture Notes(Continued)

Theorem 12 Let X be a paracompact manifold that is orientable. Then there exists a smooth
n-form ω on X such that ω never vanishes.

Proof Let Φ′ be an orientation of X. Let U = {domainφ}φ∈Φ′ . Then U is an open covering
of X. Let (V , F ) be a smooth partition of unity such that V is a refinement of U . For each
V ∈ V , let φV ∈ Φ′ be such that V ⊂ domainφV . Then the restriction of φV to V is also
an element of Φ′. Let

(
xV1 , . . . , x

V
n

)
denote the coordinate functions on V. Then the n-form

ωV = dxV1 ∧ · · · ∧ dxVn ∈ C∞(V, Λn(V )) is nowhere zero on V. Let ω =
∑
V ∈V

fV ω
V , where fV ω

V is

by definition zero outside V. Then ω ∈ C∞(X, Λn(X)).

We must show that ω is nowhere zero. For x ∈ X, let φ ∈ Φ′ be a coordinate system about x,
with domain U and coordinate functions (y1, . . . , yn). Then, for each V ∈ V with U ∩ V ̸= ∅,

ωV = dxV1 ∧ · · · ∧ dxVn = gV dy
V
1 ∧ · · · ∧ dyVn on U ∩ V,

and gV > 0 on U ∩ V since both φV and φ are members of Φ′. Thus,

ω|U =
∑
V ∈V

(
fV ω

V
)
|U =

(∑
V ∈V

fV gV

)
dyV1 ∧ · · · ∧ dyVn .

Since
∑
V ∈V

fV = 1, there exists V0 ∈ V such that fV0(x) > 0. Since gV0(x) ̸= 0 and each fV gV ≥ 0,(∑
V ∈V

fV gV

)
(x) ̸= 0 and ω(x) ̸= 0.

Remark Theorems 9 and 12 completely characterize orientability of paracompact manifolds by
the existence or nonexistence of a nonzero n-form. This characterization can be applied to show
that the projective space P n is orientable if and only if n is odd. This is done by considering
the sphere Sn as a covering space of P n with covering map p. Let ω be the nonzero n-form on
Sn constructed in the proof of Theorem 10 and its corollary. Then one can show that for n odd,
ω defines an n-form ω̃ on P n such that ω = p∗ω̃. If P n were orientable for n even, then there
would exist a nonzero n-form ω̃ on P n and then p∗ω̃ = gω for some g ̸= 0. On the other hand,
one can check that if x1 ̸= x2 ∈ Sn are such that p(x1) = p(x2), then g(x1) > 0 ⇐⇒ g(x2) < 0,
contradicting the fact that g is never zero.

Remark A nonzero smooth n-form on a smooth n-manifold is called a volume element. Thus
every orientable paracompact manifold admits a volume element. The form i(V ) dr1∧· · ·∧drn+1

on Sn discussed in Theorem 10 and its corollary is the usual volume element on the n-sphere.

Definition A Riemannian manifold is a smooth manifold X,together with a map

⟨ , ⟩ : X →
⋃
x∈X

{inner product on T (X, x)}

such that for each x ∈ X, ⟨ , ⟩(x) (usually denoted ⟨ , ⟩x) is an inner product on T (X, x) and
such that ⟨ , ⟩ is smooth; that is, for each pair V1, V2 of smooth vector fields on X, ⟨V1, V2⟩ is a
smooth function, where

⟨V1, V2⟩(x) = ⟨V1(x), V2(x)⟩x for x ∈ X.

The map ⟨V1, V2⟩ is called a Riemannian structure on X.

Theorem 13 Let X be a paracompact smooth manifold. Then there exists a Riemannian
structure on X.
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Proof Let (V , F ) be a smooth partition of unity on X such that each V ∈ V is a coordinate
neighborhood. Define a Riemannian structure ⟨ , ⟩V on each V ∈ V by

⟨ ∂
∂xi

,
∂

∂xi
⟩V = δij, 1 ≤ i, j ≤ n,

where (x1, . . . , xn) are the coordinate functions on V. Then define ⟨ , ⟩ on X by

⟨ , ⟩ =
∑
V ∈V

fV ⟨ , ⟩V .

Remark The converse of Theorem 13 also holds; namely, every Riemannian manifold is para-
compact.

Example 1. Rn is a Riemannian manifold: take {∂/∂ri} as an orthonormal basis for the tangent
space at each point.

Example 2. Let X be a Riemannian manifold, and let (Y, i) be a submanifold of X. Then a
Riemannian structure is given on Y by

⟨v1, v2⟩y = ⟨di(v1), di(v2)⟩i(y) for all v1, v2 ∈ T (Y, y).

Example 3. In view of Example 2, every submanifold of Rn has a Riemannian structure.

Example 4. LetX and Y be Riemannian manifolds. Then the manifoldX×Y has a Riemannian
structure given as follows. For (x, y) ∈ X × Y, the tangent space T (X × Y, (x, y)) is naturally
isomorphic to the direct sum of the vector spaces T (X, x) and T (Y, y). An inner product on
T (X × Y, (x, y)) is then given by requiring that this isomorphism be an isometry with the
orthogonal direct sum T (X, x)⊕ T (Y, y).
Definition Let X and Y be Riemannian manifolds. A map φ : X → Y is an isometry if it is
smooth, injective, surjective, has a smooth inverse, and is such that dφ is an isometry at each
point; that is,

⟨dφ(v1), dφ(v2)⟩φ(x) = ⟨v1, v2⟩x for all v1, v2 ∈ T (X, x) and x ∈ X.

Remark Thus an isometry preserves all the structure of a Riemannian manifold. Two manifolds
are equivalent from the viewpoint of Riemannian geometry if there exists an isometry between
them. Such manifolds are said to be isometric. Note that two Riemannian manifolds as smooth
manifolds can be the same; yet as Riemannian manifolds, be distinct.
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Example 5. Consider the torus S1 × S1. It has a Riemannian structure as a submanifold of R3

(see Figure 5.18). On the other hand, it has a Riemannian structure as a product S1×S1, where
S1 is given a Riemannian structure by way of its usual imbedding into R2. These two structures
are distinct. In fact, the product structure on S1×S1 cannot be obtained by representing S1×S1

as a submanifold of R3. (see Chapter 8). However, it can be obtained as a submanifold of R4

since
S1 × S1 ⊂ R2 × R2 = R4.
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